ISOTHERMAL CALORIMETRIC ANALYSIS OF EXOTHERMIC CHARACTERISTICS OF MUNICIPAL SEWAGE SLUDGE DURING LOW TEMPERATURE OXIDATION
-
摘要: 针对干化后城镇污水污泥的低温氧化和自加热问题,采用恒温量热分析方法对含水率为10%~70%(干基)的污泥在5个温度(30~70℃)下的低温氧化放热特性进行了实验研究。结果表明:污泥的低温氧化放热主要有3种机制,包括微生物生化氧化、无机成分(Fe/S/O系统)氧化和有机质化学氧化,污泥的低温氧化放热特性是3种机制综合表现的结果,其交叉重叠共同决定了污泥低温下的自加热特性。含水率和环境温度会影响污泥低温氧化放热过程中的各热源贡献并导致主要热源的转变,同时也会影响3种机理各自的放热特性。水分和温度增加都会使污泥的放热增强,即自加热能力变强,从而加大污泥自燃的风险。Abstract: Aiming at the problems of low temperature oxidation and self-heating of dried municipal sewage sludge, the exothermic characteristics of low temperature oxidation of the sludge with moisture content of 10%~70% (dry basis) at different temperatures (30℃~70℃) were studied with isothermal calorimetry. The results showed that the low temperature oxidation heat generation had three major mechanisms, including microbial biological oxidation, inorganic matters (Fe/S/O system) oxidation, organic matters chemical oxidation. The low temperature oxidation exothermic characteristics of the sludge were resulted from their comprehensive performance, and the overlapping of these three mechanisms jointly determined the self-heating characteristics of the sludge at low temperatures. The moisture content and ambient temperature affected the contribution of each heat source in process of sludge low-temperature oxidation, leading to the transformation of the main heat source and also having impact on the respective heat release characteristics of the three mechanisms. Increasing temperature and moisture content enhanced the heat generation of the sludge, then the self-heating potential became stronger, thus increased the risk of spontaneous combustion.
-
[1] 张静,赵建伟,孙英杰,等. 新兴污染物对剩余污泥厌氧发酵产氢的影响研究[J]. 环境工程,2020,38(8):13-20. [2] SYED-HASSAN S S A, WANG Y, HU S, et al. Thermochemical processing of sewage sludge to energy and fuel:fundamentals, challenges and considerations[J]. Renewable and Sustainable Energy Reviews, 2017, 80:888-913. [3] 李日宁,路浩,佟海松. 油田含油污泥减量及无害处理技术研究[J]. 油气田地面工程, 2019,38(12):111-115. [4] 国家能源局,生态环境部. 关于燃煤耦合生物质发电技改试点项目建设的通知(国能发电力[2018] 53号)[Z]. 2018. [5] 陈大元,王志超,李宇航,等. 燃煤机组耦合污泥发电技术[J]. 热力发电,2019,48(4):15-20. [6] ZERLOTTIN M, REFOSCO D, DELLA ZASSA M, et al. Self-heating of dried wastewater sludge[J]. Waste Management, 2013, 33(1):129-137. [7] ESCUDEY M, ARIAS A, FÖRSTER J, et al. Sewage sludge self-heating and spontaneous combustion. Field, Laboratory and Numerical Studies[J]. High Temperature Materials and Processes, 2008, 27(5):337-346. [8] POFFET M S, KÄSER K, JENNY T A. Thermal runaway of dried sewage sludge granules in storage tanks[J]. CHIMIA International Journal for Chemistry, 2008,62(1):29-34. [9] FERNANDEZ-ANEZ N, GARCIA-TORRENT J, MEDIC-PEJIC L. Flammability properties of thermally dried sewage sludge[J]. Fuel, 2014, 134:636-643. [10] DÍAZ E, PINTADO L, FABA L, et al. Effect of sewage sludge composition on the susceptibility to spontaneous combustion[J]. Journal of Hazardous Materials, 2019, 361:267-272. [11] 孙伟,王岩,揭其良,等. 300 MW机组锅炉燃煤耦合生物质发电的可行性研究[J]. 电站系统工程,2019,35(4):11-14. [12] LI X R, LIM W S, IWATA Y, KOSEKI H. Safety evaluation of sewage-sludge-derived fuels by comparison with other fuels[J]. Fire and Materials, 2009, 33(4):187-200. [13] BERTANI R, BIASIN A, CANU P, et al. Self-heating of dried industrial tannery wastewater sludge induced by pyrophoric iron sulfides formation[J]. Journal of Hazardous Materials, 2016, 305:105-114. [14] LI X R, KOSEKI H, MOMOTA M. Evaluation of danger from fermentation-induced spontaneous ignition of wood chips[J]. Journal of Hazardous Materials, 2006, 135(1/2/3):15-20. [15] ZHU Y X, ZHANG H, SHENG C D. Characterizing self-heating of cereal straws by isothermal microcalorimetry[J]. Thermochimica Acta, 2021, 698:178881. [16] WADSÖ L. Measuring chemical heat production rates of biofuels by isothermal calorimetry for hazardous evaluation modelling[J].Fire and Materials, 2007, 31(4):241-255. [17] DEWIL R, BAEYENS J, ROELS J, et al. Distribution of sulphur compounds in sewage sludge treatment[J]. Environmental Engineering Science, 2008, 25(6):879-896. [18] DELLA ZASSA M, BIASIN A, ZERLOTTIN M, et al. Self-heating of dried industrial wastewater sludge:lab-scale investigation of supporting conditions[J]. Waste Management, 2013, 33(6):1469-1477. [19] REDDY A P, JENKINS B M, VANDERGHEYNST J S. The critical moisture range for rapid microbial decomposition of rice straw during storage[J]. American Society of Agricultural and Biological Engineers, 2009, 52(2):673-677. [20] RYCKEBOER J, MERGAER T J, VAES K, et al. A survey of bacteria and fungi occurring during composting and self-heating processes[J]. Annals of Microbiology, 2003, 53(4):349-410. [21] REZAEI F, VANDERGHEYNST J S. Critical moisture content for microbial growth in dried food-processing residues[J]. Journal of the Science of Food and Agriculture, 2010, 90(12):2000-2005.
点击查看大图
计量
- 文章访问数: 119
- HTML全文浏览量: 13
- PDF下载量: 3
- 被引次数: 0