RESEARCH PROGRESS OF DIOXIN CONTROL TECHNOLOGIES IN FLY ASH FROM DOMESTIC WASTE INCINERATION
-
摘要: 生活垃圾焚烧飞灰含有二噁英等有机物和Cr、Hg等重金属,是高度危险的固体废物,已成为二噁英污染的主要来源之一。针对飞灰中二噁英的不同解毒技术研究现状,系统阐述了近年来不同技术的原理、研究现状及发展趋势等,指出具有较大工业化应用前景的是水泥窑协同处置和低温热解技术。水泥窑协同处置技术可实现二噁英高效降解,且无二次污染物产生,局限性是该技术需要依托熟料生产线,飞灰水洗预处理投资运行成本相对较高;低温热解技术可高效实现飞灰中二噁英的脱除,局限性是存在二噁英从固相转移至气相,通常集成其他气相二噁英降解技术,如催化氧化等技术,可实现气相二噁英的高效降解,能耗及投资成本相对较低。并对飞灰中二噁英未来的降解技术和发展方向进行了展望,旨在为飞灰二噁英解毒技术的实用研究提供理论研究基础。Abstract: Fly ash from domestic waste incineration contains organic matters such as dioxins, and heavy metals such as chromium and mercury. It is a highly hazardous solid waste, which has become one of the main sources of dioxin. This article focuses on the recent research status of different detoxification technologies of dioxin in fly ash, and systematically elaborates the technical principles, research status and development trend of different technologies. Cement kiln co-processing technology and low-temperature pyrolysis are the promising industrial applications technologies. Specifically, cement kiln co-processing technology can achieve high-efficiency degradation of dioxins without secondary pollutants. The limitation is that the technology needs to rely on the clinker production line, and the investment and operation cost of fly ash water washing pretreatment is relatively high. Low-temperature pyrolysis technology can be achieved efficiently in removal of dioxins in fly ash, while the dioxins may transfer from the solid phase to the gas phase. Usually, low-temperature pyrolysis technology is combined with other gas phase dioxin degradation technologies such as catalytic oxidation technology, which can achieve efficient gas phase dioxin degradation. This article aims to provide reference for the practical research of detoxification technology of dioxin in fly ash, and prospect the future degradation technology and development direction of dioxin in fly ash.
-
[1] TANG Z W, HUANG Q F, YANG Y F. PCDD/Fs in fly ash from waste incineration in China:a need for effective risk management[J]. Environmental Science & Technology, 2013,47(11):5520-5521. [2] HSIEH Y K, CHEN W S, ZHU J N, et al. Health risk assessment and correlation analysis on PCDD/Fs in the fly ash from a municipal solid waste incineration plant[J]. Aerosol and Air Quality Research, 2018,18(3):734-748. [3] WANG M S, WANG L C, CHANG-CHIEN G P. Distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans in the landfill site for solidified monoliths of fly ash[J]. Journal of Hazardous Materials, 2006,133(1/2/3):177-182. [4] ZHAN X Y, WANG L, WANG L, et al. Enhanced geopolymeric co-disposal efficiency of heavy metals from MSWI fly ash and electrolytic manganese residue using complex alkaline and calcining pre-treatment[J]. Waste Management, 2019,98:135-143. [5] 黎小保. 垃圾焚烧飞灰稳定化/固化工艺方案设计[J]. 环境与发展, 2018,30(10):100-102. [6] 唐新宇, 黄庆. 水泥窑协同处置垃圾焚烧飞灰技术的应用进展[J]. 水泥技术, 2019(1):66-69. [7] 张曙光, 王娟娟, 李萍. 一种垃圾焚烧飞灰烧结减量化处理技术:CN201410324537.3[P]. 2014-10-01. [8] 黄文有, 孟月东, 陈明周,等. 等离子体熔融生活垃圾焚烧飞灰中试试验[J]. 环境工程技术学报, 2016,6(5):501-508. [9] CHEN W Y, WU J H, LIN Y Y, et al. Bioremediation potentim of soil contaminated with highly substituted polychlorihated dibenzo-p-dioxins and dibenzofurans:microcosm study and microbial community analysis[J].Journal of Hazardous Materials, 2013,261(15):351-361. [10] POTTER P M, GUAN X, LOMNICKI S M. Synergy of iron and copper oxides in the catalytic formation of PCDD/Fs from 2-monochlorophenol[J]. Chemosphere, 2018,203:96-103. [11] DU C C, LU S Y, WANG Q L, et al. A review on catalytic oxidation of chloroaromatics from flue gas[J]. Chemical Engineering Journal, 2018,334(15):519-544. [12] MUKHERJEE A, DEBNATH B, GHOSH S K. A review on technologies of removal of dioxins and furans from incinerator flue gas[J]. Procedia Environmental Sciences, 2016,35:528-540. [13] LIU G R, ZHAN J Y, ZHENG M H, et al. Field pilot study on emissions, formations and distributions of PCDD/Fs from cement kiln co-processing fly ash from municipal solid waste incinerations[J]. Journal of Hazardous Materials, 2015,299(1):471-478. [14] AMES M, ZEMBA S, GREEN L, et al. Polychlorinated dibenzo(p)dioxin and furan (PCDD/F) congener profiles in cement kiln emissions and impacts[J]. Science of The Total Environment, 2012,419:37-43. [15] CHEN T, GUO Y, LI X D, et al. Emissions behavior and distribution of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) from cement kilns in China[J]. Environmental science and pollution research international, 2014,21(6):4245-4253. [16] XIAO H P, RU Y, PENG Z, et al. Destruction and formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during pretreatment and co-processing of municipal solid waste incineration fly ash in a cement kiln[J]. Chemosphere, 2018,210:779-788. [17] TU X, WANG Q, YU L, et al. Diagnostic of novel atmospheric plasma source and its application to vitrification of waste incinerator fly ash[J]. Energy Fuels, 2008, 22(5):3057-3064. [18] HIRAOKA K, MITSUMORI K I, MOCHIZUKI S. Decomposition of polychlorinated biphenyls (PCB's) in a radio-frequency glow discharge plasma[J]. Chemistry Letters, 1979,8(7):739-740. [19] 白力. 飞灰熔融处理技术的探究[J]. 环境卫生工程, 2017, 25(5):22-24. [20] 高术杰, 陈德喜, 马明生. 国内外城市垃圾焚烧飞灰熔融技术综述[J]. 有色冶金节能, 2019(1):14-18. [21] AMPADU K O, TORII K. Characterization of ecocement pastes and mortars produced from incinerated ashes[J]. Cement & Concrete Research, 2001,31(3):431-436. [22] WANG K S, SUN C J, YEH C C. The thermo-treatment of MSW incinerator fly ash for use as an aggregate:a study of the characteristics of size-fractioning[J]. Resources Conservation & Recycling, 2002,35(3):177-190. [23] 李润东, 于清航, 李彦龙,等. 烧结条件对焚烧飞灰烧结特性的影响研究[J]. 安全与环境学报, 2008, 8(3):60-63. [24] BUSER H R. Preparation of qualitative standard mixtures of polychlorinated dibenzo-p-dioxins and dibenzofurans by ultraviolet and γ-irradiation of the octachloro compounds[J]. Journal of Chromatography A, 1976, 129(22):303-307. [25] DUNG M H, O'KEEFE P W. Comparative rates of photolysis of polychlorinated dibenzofurans in organic solvents and in aqueous solutions[J]. Environmental Science & Technology, 1994, 28(4):549-554. [26] 徐旭, 陈彤, 严建华,等. TiO2光催化降解垃圾焚烧炉飞灰中二噁英的实验研究[J]. 环境保护科学, 2007,33(5):1-3. [27] WU C H, NG H Y. Photodegradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans:Direct photolysis and photocatalysis processes[J]. Journal of Hazardous Materials, 2008,151(2/3):507-514. [28] ROWLANDS S A, HALL A K, MCCccorORMICK P G, et al. Destruction of toxic materials[J]. Nature,1994,367:223. [29] CHEN Z L, MAG Q G, LU S Y, et al. Dioxins degradation and reformation during mechanochemical treatment[J]. Chemosphere, 2017, 180:130-140. [30] CAGNETTA G, ROBERTSON J, HUANG J, et al. Mechanochemical destruction of halogenated organic pollutants:A critical review[J]. Journal of Hazardous Materials, 2016, 313:85-102. [31] 王国生. 二噁英分解技术的开发[J]. 给水排水, 2003(6):21. [32] 谢晓峰, 汪展文, 金涌. 环境中剧毒物二噁英类化合物的影响与对策[J]. 化工进展, 2001,20(3):57-61. [33] YAMAGUCHI H, SHIBUYA E, KANAMARU Y, et al. Hydrothermal decomposition of PCDDs/PCDFs in MSWI fly ash[J]. Chemosphere, 1996, 32(1):203-208. [34] QIU Q L, CHEN Q, JIANG X G, et al. Improving microwave-assisted hydrothermal degradation of PCDD/Fs in fly ash with added Na2HPO4 and water-washing pretreatment[J]. Chemosphere, 2019, 220:1118-1125. [35] CHANG Y M, DAI W C, TSAI K S, et al. Reduction of PCDDs/PCDFs in MSWI fly ash using microwave peroxide oxidation in H2SO4/HNO3 solution[J]. Chemosphere, 2013,91(6):864-868. [36] LIU X T, YU G. Combined effect of microwave and activated carbon on the remediation of polychlorinated biphenyl-contaminated soil[J]. Chemosphere, 2006,63(2):228-235. [37] HAGENMAIER H, KRAFT M, BRUNNER H, et al. Catalytic effects of fly ash from waste incineration facilities on the formation and decomposition of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans[J]. Environmental Science & Technology, 1987,21(11):1080-1084. [38] 严建华, 陈彤, 谷月玲,等. 垃圾焚烧炉飞灰中二噁英的低温热处理试验研究[J].中国电机工程学报, 2005,25(23):95-99. [39] 张峰, 张海军, 陈吉平,等. 飞灰中二噁英热脱附行为的研究[J]. 环境科学, 2008,29(2):2525-2528. [40] 吉冰静, 高兴保, 黄启飞,等. 金属氧化物降解六氯苯的活性比较及催化机理研究[J]. 环境科学学报, 2017,37(7):2616-2622. [41] 刘玉, 邱丽娜, 弓爱君,等. 二噁英降解酶的研究进展[J]. 环境污染与防治, 2015,37(1):76-81,99. [42] HUNG P C, LO W C, CHI K H, et al. Reduction of dioxin emission by a multi-layer reactor with bead-shaped activated carbon in simulated gas stream and real flue gas of a sinter plant[J]. Chemosphere, 2011,82(1):72-77. [43] YU M F, LI W W, LI X D, et al. Development of new transition metal oxide catalysts for the destruction of PCDD/Fs[J]. Chemosphere, 2016,156:383-391. [44] FINOCCHIO E, BUSCA G, NOTARO M. A review of catalytic processes for the destruction of PCDD and PCDF from waste gases[J]. Applied Catalysis B:Environmental, 2006,62(1):12-20. [45] HAN L P, CAI S X, GAO M, et al. Selective catalytic reduction of NOx with NH3 by using novel catalysts:state of the art and future prospects[J]. Chemical Review, 2019,119(19):10916-10976. [46] ZHAO R X, JIN D D, YANG H S, et al. Low-temperature catalytic decomposition of 130 tetra-to octa-PCDD/Fs congeners over CuOx and MnOx modified V2O5/TiO2-CNTs with the assistance of O3[J]. Environmental Science & Technology, 2016,50(20):11424-11432. [47] CHEN R, JIN D D, YANG H S, et al. Ozone promotion of monochlorobenzene catalytic oxidation over carbon nanotubes-supported copper oxide at high temperature[J]. Catalysis Letters, 2013,143(11):1207-1213.
点击查看大图
计量
- 文章访问数: 223
- HTML全文浏览量: 17
- PDF下载量: 19
- 被引次数: 0