CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生活垃圾焚烧飞灰二噁英控制技术研究进展

王肇嘉 秦玉 顾军 蔡文涛 朱延臣 李强

王肇嘉, 秦玉, 顾军, 蔡文涛, 朱延臣, 李强. 生活垃圾焚烧飞灰二噁英控制技术研究进展[J]. 环境工程, 2021, 39(10): 116-123. doi: 10.13205/j.hjgc.202110016
引用本文: 王肇嘉, 秦玉, 顾军, 蔡文涛, 朱延臣, 李强. 生活垃圾焚烧飞灰二噁英控制技术研究进展[J]. 环境工程, 2021, 39(10): 116-123. doi: 10.13205/j.hjgc.202110016
WANG Zhao-jia, QIN Yu, GU Jun, CAI Wen-tao, ZHU Yan-chen, LI Qiang. RESEARCH PROGRESS OF DIOXIN CONTROL TECHNOLOGIES IN FLY ASH FROM DOMESTIC WASTE INCINERATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 116-123. doi: 10.13205/j.hjgc.202110016
Citation: WANG Zhao-jia, QIN Yu, GU Jun, CAI Wen-tao, ZHU Yan-chen, LI Qiang. RESEARCH PROGRESS OF DIOXIN CONTROL TECHNOLOGIES IN FLY ASH FROM DOMESTIC WASTE INCINERATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 116-123. doi: 10.13205/j.hjgc.202110016

生活垃圾焚烧飞灰二噁英控制技术研究进展

doi: 10.13205/j.hjgc.202110016
基金项目: 

天津市科委基金(20YDLZSN00100)。

详细信息
    作者简介:

    王肇嘉(1963-),男,教授级高工,主要研究方向为固体废物资源化利用及大气污染控制技术。wangzhaojia@bbmg.com.con

    通讯作者:

    秦玉(1986-),女,博士,主要研究方向为固体废物资源化利用及大气污染控制技术。qinyu@bbma.com.cn

RESEARCH PROGRESS OF DIOXIN CONTROL TECHNOLOGIES IN FLY ASH FROM DOMESTIC WASTE INCINERATION

  • 摘要: 生活垃圾焚烧飞灰含有二噁英等有机物和Cr、Hg等重金属,是高度危险的固体废物,已成为二噁英污染的主要来源之一。针对飞灰中二噁英的不同解毒技术研究现状,系统阐述了近年来不同技术的原理、研究现状及发展趋势等,指出具有较大工业化应用前景的是水泥窑协同处置和低温热解技术。水泥窑协同处置技术可实现二噁英高效降解,且无二次污染物产生,局限性是该技术需要依托熟料生产线,飞灰水洗预处理投资运行成本相对较高;低温热解技术可高效实现飞灰中二噁英的脱除,局限性是存在二噁英从固相转移至气相,通常集成其他气相二噁英降解技术,如催化氧化等技术,可实现气相二噁英的高效降解,能耗及投资成本相对较低。并对飞灰中二噁英未来的降解技术和发展方向进行了展望,旨在为飞灰二噁英解毒技术的实用研究提供理论研究基础。
  • [1] TANG Z W, HUANG Q F, YANG Y F. PCDD/Fs in fly ash from waste incineration in China:a need for effective risk management[J]. Environmental Science & Technology, 2013,47(11):5520-5521.
    [2] HSIEH Y K, CHEN W S, ZHU J N, et al. Health risk assessment and correlation analysis on PCDD/Fs in the fly ash from a municipal solid waste incineration plant[J]. Aerosol and Air Quality Research, 2018,18(3):734-748.
    [3] WANG M S, WANG L C, CHANG-CHIEN G P. Distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans in the landfill site for solidified monoliths of fly ash[J]. Journal of Hazardous Materials, 2006,133(1/2/3):177-182.
    [4] ZHAN X Y, WANG L, WANG L, et al. Enhanced geopolymeric co-disposal efficiency of heavy metals from MSWI fly ash and electrolytic manganese residue using complex alkaline and calcining pre-treatment[J]. Waste Management, 2019,98:135-143.
    [5] 黎小保. 垃圾焚烧飞灰稳定化/固化工艺方案设计[J]. 环境与发展, 2018,30(10):100-102.
    [6] 唐新宇, 黄庆. 水泥窑协同处置垃圾焚烧飞灰技术的应用进展[J]. 水泥技术, 2019(1):66-69.
    [7] 张曙光, 王娟娟, 李萍. 一种垃圾焚烧飞灰烧结减量化处理技术:CN201410324537.3[P]. 2014-10-01.
    [8] 黄文有, 孟月东, 陈明周,等. 等离子体熔融生活垃圾焚烧飞灰中试试验[J]. 环境工程技术学报, 2016,6(5):501-508.
    [9] CHEN W Y, WU J H, LIN Y Y, et al. Bioremediation potentim of soil contaminated with highly substituted polychlorihated dibenzo-p-dioxins and dibenzofurans:microcosm study and microbial community analysis[J].Journal of Hazardous Materials, 2013,261(15):351-361.
    [10] POTTER P M, GUAN X, LOMNICKI S M. Synergy of iron and copper oxides in the catalytic formation of PCDD/Fs from 2-monochlorophenol[J]. Chemosphere, 2018,203:96-103.
    [11] DU C C, LU S Y, WANG Q L, et al. A review on catalytic oxidation of chloroaromatics from flue gas[J]. Chemical Engineering Journal, 2018,334(15):519-544.
    [12] MUKHERJEE A, DEBNATH B, GHOSH S K. A review on technologies of removal of dioxins and furans from incinerator flue gas[J]. Procedia Environmental Sciences, 2016,35:528-540.
    [13] LIU G R, ZHAN J Y, ZHENG M H, et al. Field pilot study on emissions, formations and distributions of PCDD/Fs from cement kiln co-processing fly ash from municipal solid waste incinerations[J]. Journal of Hazardous Materials, 2015,299(1):471-478.
    [14] AMES M, ZEMBA S, GREEN L, et al. Polychlorinated dibenzo(p)dioxin and furan (PCDD/F) congener profiles in cement kiln emissions and impacts[J]. Science of The Total Environment, 2012,419:37-43.
    [15] CHEN T, GUO Y, LI X D, et al. Emissions behavior and distribution of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) from cement kilns in China[J]. Environmental science and pollution research international, 2014,21(6):4245-4253.
    [16] XIAO H P, RU Y, PENG Z, et al. Destruction and formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during pretreatment and co-processing of municipal solid waste incineration fly ash in a cement kiln[J]. Chemosphere, 2018,210:779-788.
    [17] TU X, WANG Q, YU L, et al. Diagnostic of novel atmospheric plasma source and its application to vitrification of waste incinerator fly ash[J]. Energy Fuels, 2008, 22(5):3057-3064.
    [18] HIRAOKA K, MITSUMORI K I, MOCHIZUKI S. Decomposition of polychlorinated biphenyls (PCB's) in a radio-frequency glow discharge plasma[J]. Chemistry Letters, 1979,8(7):739-740.
    [19] 白力. 飞灰熔融处理技术的探究[J]. 环境卫生工程, 2017, 25(5):22-24.
    [20] 高术杰, 陈德喜, 马明生. 国内外城市垃圾焚烧飞灰熔融技术综述[J]. 有色冶金节能, 2019(1):14-18.
    [21] AMPADU K O, TORII K. Characterization of ecocement pastes and mortars produced from incinerated ashes[J]. Cement & Concrete Research, 2001,31(3):431-436.
    [22] WANG K S, SUN C J, YEH C C. The thermo-treatment of MSW incinerator fly ash for use as an aggregate:a study of the characteristics of size-fractioning[J]. Resources Conservation & Recycling, 2002,35(3):177-190.
    [23] 李润东, 于清航, 李彦龙,等. 烧结条件对焚烧飞灰烧结特性的影响研究[J]. 安全与环境学报, 2008, 8(3):60-63.
    [24] BUSER H R. Preparation of qualitative standard mixtures of polychlorinated dibenzo-p-dioxins and dibenzofurans by ultraviolet and γ-irradiation of the octachloro compounds[J]. Journal of Chromatography A, 1976, 129(22):303-307.
    [25] DUNG M H, O'KEEFE P W. Comparative rates of photolysis of polychlorinated dibenzofurans in organic solvents and in aqueous solutions[J]. Environmental Science & Technology, 1994, 28(4):549-554.
    [26] 徐旭, 陈彤, 严建华,等. TiO2光催化降解垃圾焚烧炉飞灰中二噁英的实验研究[J]. 环境保护科学, 2007,33(5):1-3.
    [27] WU C H, NG H Y. Photodegradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans:Direct photolysis and photocatalysis processes[J]. Journal of Hazardous Materials, 2008,151(2/3):507-514.
    [28] ROWLANDS S A, HALL A K, MCCccorORMICK P G, et al. Destruction of toxic materials[J]. Nature,1994,367:223.
    [29] CHEN Z L, MAG Q G, LU S Y, et al. Dioxins degradation and reformation during mechanochemical treatment[J]. Chemosphere, 2017, 180:130-140.
    [30] CAGNETTA G, ROBERTSON J, HUANG J, et al. Mechanochemical destruction of halogenated organic pollutants:A critical review[J]. Journal of Hazardous Materials, 2016, 313:85-102.
    [31] 王国生. 二噁英分解技术的开发[J]. 给水排水, 2003(6):21.
    [32] 谢晓峰, 汪展文, 金涌. 环境中剧毒物二噁英类化合物的影响与对策[J]. 化工进展, 2001,20(3):57-61.
    [33] YAMAGUCHI H, SHIBUYA E, KANAMARU Y, et al. Hydrothermal decomposition of PCDDs/PCDFs in MSWI fly ash[J]. Chemosphere, 1996, 32(1):203-208.
    [34] QIU Q L, CHEN Q, JIANG X G, et al. Improving microwave-assisted hydrothermal degradation of PCDD/Fs in fly ash with added Na2HPO4 and water-washing pretreatment[J]. Chemosphere, 2019, 220:1118-1125.
    [35] CHANG Y M, DAI W C, TSAI K S, et al. Reduction of PCDDs/PCDFs in MSWI fly ash using microwave peroxide oxidation in H2SO4/HNO3 solution[J]. Chemosphere, 2013,91(6):864-868.
    [36] LIU X T, YU G. Combined effect of microwave and activated carbon on the remediation of polychlorinated biphenyl-contaminated soil[J]. Chemosphere, 2006,63(2):228-235.
    [37] HAGENMAIER H, KRAFT M, BRUNNER H, et al. Catalytic effects of fly ash from waste incineration facilities on the formation and decomposition of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans[J]. Environmental Science & Technology, 1987,21(11):1080-1084.
    [38] 严建华, 陈彤, 谷月玲,等. 垃圾焚烧炉飞灰中二噁英的低温热处理试验研究[J].中国电机工程学报, 2005,25(23):95-99.
    [39] 张峰, 张海军, 陈吉平,等. 飞灰中二噁英热脱附行为的研究[J]. 环境科学, 2008,29(2):2525-2528.
    [40] 吉冰静, 高兴保, 黄启飞,等. 金属氧化物降解六氯苯的活性比较及催化机理研究[J]. 环境科学学报, 2017,37(7):2616-2622.
    [41] 刘玉, 邱丽娜, 弓爱君,等. 二噁英降解酶的研究进展[J]. 环境污染与防治, 2015,37(1):76-81

    ,99.
    [42] HUNG P C, LO W C, CHI K H, et al. Reduction of dioxin emission by a multi-layer reactor with bead-shaped activated carbon in simulated gas stream and real flue gas of a sinter plant[J]. Chemosphere, 2011,82(1):72-77.
    [43] YU M F, LI W W, LI X D, et al. Development of new transition metal oxide catalysts for the destruction of PCDD/Fs[J]. Chemosphere, 2016,156:383-391.
    [44] FINOCCHIO E, BUSCA G, NOTARO M. A review of catalytic processes for the destruction of PCDD and PCDF from waste gases[J]. Applied Catalysis B:Environmental, 2006,62(1):12-20.
    [45] HAN L P, CAI S X, GAO M, et al. Selective catalytic reduction of NOx with NH3 by using novel catalysts:state of the art and future prospects[J]. Chemical Review, 2019,119(19):10916-10976.
    [46] ZHAO R X, JIN D D, YANG H S, et al. Low-temperature catalytic decomposition of 130 tetra-to octa-PCDD/Fs congeners over CuOx and MnOx modified V2O5/TiO2-CNTs with the assistance of O3[J]. Environmental Science & Technology, 2016,50(20):11424-11432.
    [47] CHEN R, JIN D D, YANG H S, et al. Ozone promotion of monochlorobenzene catalytic oxidation over carbon nanotubes-supported copper oxide at high temperature[J]. Catalysis Letters, 2013,143(11):1207-1213.
  • 加载中
计量
  • 文章访问数:  206
  • HTML全文浏览量:  13
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-12
  • 网络出版日期:  2022-01-26

目录

    /

    返回文章
    返回