DISTRIBUTION CHARACTERISTICS OF WATER-SOLUBLE IONS IN SOILS, DUST AND COKE QUENCHING SLAG AROUND THE COKE OVEN
-
摘要: 为了明确炼焦炉周边土壤、降尘和熄焦渣中水溶性离子的分布特征,采集焦化厂厂区内土壤、降尘、熄焦渣及厂区外土壤样品,利用美国戴安公司ICS-90型离子色谱仪测定样品中SO42-、NO3-、Cl-、F-、NH4+、Na+、Ca2+、K+、Mg2+ 9种水溶性离子。结果表明:炼焦炉周边土壤、降尘和熄焦渣中总水溶性离子质量浓度分别为1.65,5.27,2.19 g/kg。炼焦炉周边土壤中SO42-和NH4+的变异系数分别为84.22%和51.17%,说明炼焦炉周边土壤受到炼焦过程排放污染物的影响不同,且厂区内土壤更易受到炼焦过程的影响。燃烧室废气排放烟囱旁和熄焦塔南降尘中NO3-/SO42-分别为0.46和0.03,说明炼焦炉周边降尘也受到炼焦过程排放污染物的影响。熄焦塔南降尘中总水溶性离子和SO42-的质量分数是燃烧室废气烟囱旁降尘的6.99,18.44倍,熄焦渣和熄焦塔南降尘水溶性离子分布特征基本相同,二者之间存在明显相关性。SO42-是炼焦炉周边土壤、降尘和熄焦渣中质量分数最高的水溶性离子,因此建议加强炼焦过程颗粒物和SO2排放的控制。Abstract: In order to clarify the distribution characteristics of water-soluble ions in the soils, dust and coke quenching slag around the coke oven, the samples around the coke oven were collected. Ions (SO42-, NO3-, Cl-, F-, NH4+, Na+, Ca2+, K+, and Mg2+) in the samples were analyzed using ICS-90 ion chromatograph (Dionex, USA).The results showed that the mass fractions of water-soluble ions in the soils, dust and coke quenching slag around the coke oven were 1.65, 5.27, 2.19 g/kg, respectively. The variation coefficients of SO42- and NH4+ in the soils around the coke oven were 84.22% and 51.17%, suggesting that the soils were affected differently by pollutants emitted during coking process. The soil inside the coking plant were more susceptible to pollutants emitted from coking process, than those in the soil outside the coking plant. The NO3-/SO42- ratios in the dust near combustion chamber exhaust chimney and in south of quenching tower were 0.46 and 0.03, respectively, indicating that the dust around the coke oven was also affected by the pollutants emitted from coking process. The mass fractions of total water-soluble ions and SO42- in the dust in south of quenching tower were 6.99 times and 18.44 times those of the dust next to combustion chamber exhaust chimney, respectively. The distribution characteristic of water-soluble ions in coke quenching slag was almost the same as that in dust in south of quenching tower, and there was a significant correlation between coke quenching slag and dust in south of quenching tower. SO42- was a water-soluble ion with the highest mass fraction in the soils, dust and coke quenching slag around the coke oven. Therefore, it was suggested to strengthen the control of particulate matter and SO2 emission in the coking process.
-
Key words:
- coke oven /
- soil /
- dust /
- water-soluble ion /
- variation coefficient
-
[1] 李超, 郑文华. 我国焦化行业近况、展望及应对[J]. 河北冶金, 2018(1):1-5. [2] 牟玲. 机械炼焦过程主要大气污染物排放特征及迁移行为研究[D]. 太原:太原理工大学, 2013. [3] 范振华, 李绍京, 寇竹娟. 煤焦化过程中污染物的产生与控制[J]. 煤炭转化, 1997, 20(4):34-40. [4] 郝宝荣. 煤焦化过程污染对居民健康影响的研究[J]. 现代预防医学, 2008, 35(20):3931-3932,3934. [5] 张姝婷, 刘效峰, 白慧玲, 等. 不同装煤方式和炭化室高度的焦炉周边环境空气总悬浮颗粒物碳组分特征[J]. 环境污染与防治, 2020, 42(4):422-425. [6] 刘效峰, 彭林, 白慧玲, 等. 焦炉顶和厂区环境中有机碳和元素碳的粒径分布[J]. 环境科学, 2013, 34(8):2955-2960. [7] 刘效峰, 彭林, 白慧玲, 等. 炼焦炉周边环境PM10中多环芳烃的分布特征[J]. 华中科技大学学报(自然科学版), 2013, 41(9):85-90. [8] HE J, BALASUBRAMANIAN R. Rain-aerosol coupling in the tropical atmosphere of Southeast Asia:distribution and scavenging ratios of major ionic species[J]. Journal of Atmospheric Chemistry, 2009, 60(3):205-220. [9] CHENG M T, TSAI Y I. Characterization of visibility and atmospheric aerosols in urban, suburban, and remote areas[J]. The Science of the Total Environment, 2000, 263:101-114. [10] ZHOU H J, LV C W, HE J, et al. Stoichiometry of water-soluble ions in PM2.5:application in source apportionment for a typical industrial city in semi-arid region, Northwest China[J]. Atmospheric Research, 2018, 204:149-160. [11] 尹德洁, 荆瑞, 关海燕, 等. 天津滨海新区湿地耐盐植物分布与土壤化学因子的相关关系[J]. 北京林业大学学报, 2018, 40(8):103-115. [12] 张俊秀, 张青, 吴志新, 等. 离子色谱分离-电导/紫外检测测定土壤中常见可溶性无机阴离子[J]. 天津职业大学学报, 1999(1):3-5. [13] 秦伟, 周盼, 安塞, 等. 石家庄市夏季道路降尘PM2.5水溶性离子分析[J]. 环境科学与技术, 2018, 41(5):146-150. [14] 刘程, 刘思宇. 道路降尘PM2.5水溶性离子特征研究[J]. 环境科学与管理, 2019, 44(12):112-115. [15] 丁海霞, 陶雪梅, 张宁. 兰州市大气降尘和土壤中水溶性离子的研究[J]. 甘肃科技,2017, 33(20):33-36. [16] 王攀, 朱湾湾, 樊瑾, 等. 宁夏燃煤电厂周围降水降尘中硫氮沉降特征研究[J]. 生态环境学报, 2020, 29(6):1189-1197. [17] 魏凤华, 刘效峰, 武慧, 等. 炼焦过程及周边环境颗粒物中水溶性无机离子特征[J]. 环境科学研究, 2019, 32(12):2091-2097. [18] YAO X, CHAN C K, FANG M, et al. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China[J]. Atmospheric Environment, 2002, 36(26):4223-4234. [19] CHOW J C, WATSON J G, KUHNS H, et al. Source profiles for industrial, mobile, and area sources in the big bend regional aerosol visibility and observational study[J]. Chemosphere, 2004, 54(2):185-208. [20] 董莉丽. 植被恢复对土壤水溶性阴离子浓度的影响[J]. 河南科学, 2020, 38(5):721-727. [21] 王树慧, 张焕棠. 山西省长治市地方病区与部分土壤中元素分布的分析[J]. 中国热带医学, 2003,3(2):247-249. [22] 何秋生, 范晓周, 王新明, 等. 煤焦化过程中颗粒物和二氧化硫的释放[J]. 地球与环境, 2007, 35(3):279-283. [23] 王培俊, 刘俐, 李发生, 等. 炼焦过程产生的污染物分析[J]. 煤炭科学技术, 2010, 38(12):114-118. [24] 宋畅, 刘钊, 汪涛, 等. 超低排放电厂PM,SO2,NOx及汞污染排放特征[J]. 华北电力大学学报(自然科学版), 2017, 44(6):93-99. [25] SAARNIO K, FREY A, NIEMI J V, et al. Chemical composition and size of particles in emissions of a coal-fired power plant with flue gas desulfurization[J]. Journal of Aerosol Science, 2014, 73:14-26. [26] KHODER M I. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area[J]. Chemosphere, 2002, 49(6):675-684. [27] MCMURRY P H, WILSON J C. Droplet phase (Heterogeneous) and gas phase (homogeneous) contributions to secondary ambient aerosol formation as functions of relative humidity[J]. Journal of Geophysical Research:Oceans, 1983, 88(C9):5101-5108. [28] 张家泉, 胡天鹏, 刘浩, 等. 316国道黄石-武汉段大气降尘中水溶性离子污染特征[J]. 中国粉体技术, 2014, 20(6):34-39. [29] 胡伟, 邵明安, 王全九. 黄土高原退耕坡地土壤水分空间变异的尺度性研究[J]. 农业工程学报, 2005,21(8):11-16. [30] 郭宏, 刘天鹏, 杜毅飞, 等. 黄土高原县域苹果园土壤养分空间变异特征研究[J]. 水土保持研究, 2015, 22(3):21-27. [31] 王丹丹, 史学正, 于东升, 等. 东北地区旱地土壤有机碳密度的主控自然因素研究[J]. 生态环境学报, 2009, 18(3):1049-1053. [32] 王婕, 牛文全, 张文倩, 等. 农田表层土壤养分空间变异特性研究[J]. 农业工程学报, 2020, 36(15):37-46. [33] 马子轸, 李振, 蒋靖坤, 等. 燃煤电厂产生和排放的PM2.5中水溶性离子特征[J]. 环境科学, 2015, 36(7):2361-2366. [34] 邹学军. 焦炉大气污染物排放及清洁生产研究[D]. 呼和浩特:内蒙古大学, 2007. [35] ARIMOTO R. Chemical composition of atmospheric aerosols from Zhenbeitai, China, and Gosan, South Korea, during ACE-Asia[J]. Journal of Geophysical Research, 2004, 109(D19):D19S04. [36] WANG Y, ZHUANG G S, ZHANG X Y, et al. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai[J]. Atmospheric Environment, 2006, 40(16):2935-2952. [37] 周盼, 秦伟, 郭硕, 等. 石家庄冬季道路积尘水溶性离子污染特征及来源分析[J]. 环境化学, 2018, 37(5):952-958. [38] 石琼林. 成都市东郊(工业区)分级颗粒物及酸雨中水溶性酸性离子分析[J]. 地质灾害与环境保护, 2008, 19(1):79-82. [39] MU L, ZHENG L, LIANG M, et al. Characterization and source analysis of water-soluble ions in atmospheric particles in Jinzhong, China[J]. Aerosol and Air Quality Research, 2019, 19(11):2396-2409. [40] 李忠庆. 浅谈焦化过程中PM2.5的排放与控制[J]. 山西化工, 2015,35(5):71-72,75. [41] 陈慧芬. 炼焦及煤气净化工序清洁生产水平评价指标体系的分析与应用[D].马鞍山:安徽工业大学,2016. [42] 张林杰, 张俊, 王永树. 控制干熄焦逸散气中SO2达标排放的实践[J]. 柳钢科技, 2020(5):26-29. [43] CHEN X J, ZHANG H R, GUO Y X, et al. Activation mechanisms on potassium hydroxide enhanced microstructures development of coke powder[J].Chinese Journal of Chemical Engineering,2020,28(1):299-306. [44] ZHANG C, LI J F, CHENG F Q. Recycling of powder coke to cost effective adsorbent material and its application for tertiary treatment of coking wastewater[J]. Journal of Cleaner Production,2020,261:121114.
点击查看大图
计量
- 文章访问数: 107
- HTML全文浏览量: 13
- PDF下载量: 3
- 被引次数: 0