RESEARCH PROGRESS ON INTERACTIONS BETWEEN CARBONATE AND ACID MINE DRAINAGE AND ITS PASSIVE TREATMENT TECHNOLOGY
-
摘要: 矿产开发利用过程中产生的酸性矿山废水(AMD)污染严重,极易导致周边生态环境破坏,而喀斯特地区天然材料碳酸盐岩(白云岩/石灰岩)及其中和反应产生的针铁矿、施威特曼石、水铁矿等次生矿物能通过氧化与还原、溶解与沉淀、配体交换、吸附络合等多种机制净化AMD。总结了碳酸盐岩中和AMD的反应机理、AMD溶蚀碳酸盐岩过程的物理化学行为,阐明了AMD-碳酸盐岩作用过程中形成的次生矿物种类、形成条件、生成顺序及其环境意义,并综述了国内外以碳酸盐岩为反应介质处理AMD技术的最新进展,以期为进一步提高碳酸盐岩处理不同类型酸性矿山排水的持续有效性、构建系统使用寿命预测模型以及优化处理系统工艺方法提供参考。Abstract: Acid mine drainage (AMD), generated during the exploitation and utilization of mineral resources, has seriously impact on the surrounding ecological environment, especially on the water environment. The carbonate rocks from the karst region not only neutralize the acidity of AMD, but also remove the contaminants by oxidation and reduction, dissolution and precipitation, ligand exchange, adsorption and complexation and other mechanisms, as well as the sediments (goethite, schwertmannite, ferrihydrite, etc) from AMD's reaction with carbonate. This paper summarized the reaction mechanism between AMD and carbonate and the physical and chemical behaviors of carbonate dissolution under AMD action, and provided an overview of the types of secondary minerals formed in the process of AMD-carbonate interaction, the formation conditions, the order of formation and the environmental significance. Furthermore, it reviewed the research progress on the treatment methods of AMD by carbonate rocks, which could provide references for further improving continuous effectiveness of carbonate for treating different types of AMD, establishing the life prediction models of reaction system and optimizing the parameters of treatment methods for AMD.
-
Key words:
- carbonate rock /
- acid mine drainage /
- water-rock interaction /
- passive treatment
-
[1] GARCÃ-A-VALERO A, MARTÃ-NEZ-MARTÃ-NEZ S, FAZ A, et al. Environmentally sustainable acid mine drainage remediation:use of natural alkaline material[J]. Journal of Water Process Engineering, 2020, 33:101064. [2] SEPHTON M G, WEBB J A. The role of secondary minerals in remediation of acid mine drainage by Portland cement[J]. Journal of Hazardous Materials, 2019, 367:267-276. [3] FERNANDO W A M, ILANKOON I M S K, SYED T H, et al. Challenges and opportunities in the removal of sulphate ions in contaminated mine water:a review[J]. Minerals Engineering, 2018, 117:74-90. [4] YU J Y, HEO B, CHOI I K, et al. Apparent solubilities of schwertmannite and ferrihydrite in natural stream waters polluted by mine drainage[J]. Geochimica et Cosmochimica Acta, 1999, 63(19):3407-3416. [5] ANITA P F, LOTTERMOSER B G. A critical review of acid rock drainage prediction methods and practices[J]. Minerals Engineering, 2015, 82:107-124. [6] GAULT A G, COOKE D R, TOWNSEND A T, et al. Mechanisms of arsenic attenuation in acid mine drainage from Mount Bischoff, western Tasmania[J]. Science of the Total Environment, 2005, 345(1/2/3):219-228. [7] PALOMINO-ORE S B, RIMSTIDT J D, CHERMAK J A, et al. Aluminum hydroxide coatings in limestone drains[J]. Applied Geochemistry, 2019, 103:23-30. [8] IGARASHI T, HERRERA P S, UCHIYAMA H, et al. The two-step neutralization ferrite-formation process for sustainable acid mine drainage treatment:removal of copper, zinc and arsenic, and the influence of coexisting ions on ferritization[J]. The Ence of the Total Environment, 2020, 715(1):1-12. [9] DANG Z, LIU C, HAIGH M J. Mobility of heavy metals associated with the natural weathering of coal mine spoils[J]. Environmental Pollution, 2002, 118(3):419-426. [10] NDLOVU S, SIMATE G S, MCHIBWA K A, et al. Characterization of nanoprecipitates formed from the forced hydrolysis of bioleach liquors under different pH conditions[J]. Journal of Industrial & Engineering Chemistry, 2014, 20(5):3578-3583. [11] SCHMIDT T S, SOUCEK D J, CHERRY D S. Modification of an ecotoxicological rating to bioassess small acid mine drainage-impacted watersheds exclusive of benthic macroinvertebrate analysis[J]. Environmental Toxicology & Chemistry, 2002, 21(5):1091-1097. [12] YUN S T, JUNG H B, SO C S. Transport, Fate and speciation of heavy metals (Pb, Zn, Cu, Cd) in mine drainage:geochemical modeling and anodic stripping voltammetric analysis[J]. Environmental Technology Letters, 2001, 22(7):749-770. [13] FENG Q, LI T, QIAN B, et al. Chemical characteristics and utilization of coal mine drainage in China[J]. Mine Water and the Environment, 2014, 33(3):276-286. [14] 石金芳, 吴攀, 张瑞雪, 等. 煤矿排水影响下的水体水质特征及灌溉适宜性评价:以贵州织金县贯城河小流域为例[J]. 节水灌溉, 2016(11):71-76. [15] DAS A, PATEL S S, KUMAR R, et al. Geochemical sources of metal contamination in a coal mining area in Chhattisgarh, India using lead isotopic ratios[J]. Chemosphere Environmental Toxicology & Risk Assessment, 2018, 197:152-164. [16] SKUSEN J, ZIPPER C E, ROSE A, et al. Review of passive systems for acid mine drainage treatment[J]. Mine Water and the Environment, 2017, 36(1):133-153. [17] PARK I, TABELIN C B, JEON S, et al. A review of recent strategies for acid mine drainage prevention and mine tailings recycling[J]. Chemosphere, 2019, 219:588-606. [18] 马永生. 碳酸盐岩微相[M]. 北京:地质出版社, 2006:7-13. [19] 路凤香, 桑隆康. 岩石学[M]. 北京:地质出版社, 2001:98-103. [20] 雷良奇, 宋慈安, 谢襄漓, 等. 广西大厂巴里碳酸盐型尾矿的酸化特征及机理[J]. 岩石矿物学杂志, 2011, 30(1):141-149. [21] 杨绍章, 吴攀, 张瑞雪, 等. 有氧垂直折流式反应池处理煤矿酸性废水[J]. 环境工程学报, 2011, 5(4):789-794. [22] LABASTIDA I, ARMIENTA M A, LARA-CASTRO R H, et al. Treatment of mining acidic leachates with indigenous limestone, Zimapan Mexico[J]. Journal of Hazardous Materials, 2013, 262:1187-1195. [23] HAMMARSTROM J M, SIBRELL P L, BELKIN H E. Characterization of limestone reacted with acid-mine drainage in a pulsed limestone bed treatment system at the Friendship Hill National Historical Site, Pennsylvania, USA[J]. Applied Geochemistry, 2003, 18(11):1705-1721. [24] GERHARD F, PHILLIPS B L, ULRICH K, et al. The origin of aluminum flocs in polluted streams[J]. Science, 2002, 297(5590):2245-2247. [25] SANTOMARTINO S, WEBB J A. Estimating the longevity of limestone drains in treating acid mine drainage containing high concentrations of iron[J]. Applied Geochemistry, 2007, 22(11):2344-2361. [26] MILLER A, WILDEMAN T, FIGUEROA L. Zinc and nickel removal in limestone based treatment of acid mine drainage:the relative role of adsorption and co-precipitation[J]. Applied Geochemistry, 2013, 37:57-63. [27] 陈强, 朱宝龙, 刘少巍, 等. 岩溶地区地下工程对环境影响的初步分析[J]. 水土保持学报, 2003,17(5):96-99. [28] 杨艳, 吴攀, 陶秀珍. 碳酸盐岩抑制煤中有害元素释放和迁移能力的研究[J]. 环境科学学报, 2010, 30(7):1395-1400. [29] NOTDSTROM D K. Mine waters:acidic to circumneutral[J]. Elements, 2011, 7(6):393-398. [30] ESPANA J S, PAMO E L, PASTOR E S, et al. The natural attenuation of two acidic effluents in Tharsis and La Zarza-Perrunal mines (Iberian Pyrite Belt, Huelva, Spain)[J]. Environmental Geology, 2005, 49(2):253-266. [31] SIENKIEWICEZ E, GASIOROWSKI M. The evolution of a mining lake:from acidity to natural neutralization[J]. Science of the Total Environment, 2016, 557/558(1):343-354. [32] BURT R A, CARUCCIO F T. The effect of limestone treatments on the rate of acid generation from pyritic mine gangue[J]. Environ Geochem Health, 1986, 8(3):71-78. [33] 沙双双. 酸性矿井水入渗过程中水岩作用分析[J]. 山西化工, 2019, 39(2):105-107. [34] 周秀艳, 付建飞. 抚顺西露天矿区地下水水化学及演变特征[J]. 露天采矿技术, 2020, 35(2):6-10. [35] MICHAL G, ELWIRA S. The evolution of a mining lake:from acidity to natural neutralization[J]. The Science of the Total Environment, 2016:557-558. [36] 刘再华, 袁道先, 何师意. 不同岩溶动力系统的碳稳定同位素和地球化学特征及其意义:以我国几个典型岩溶地区为例[J]. 地质学报, 1997,71(3):281-288. [37] 刘再华. 外源水对灰岩和白云岩的侵蚀速率野外试验研究:以桂林尧山为例[J]. 中国岩溶, 2000,19(1):1-4. [38] CARRERO S, FERNANDEZ M A, PEREZ L, RAFAEL, et al. The nanocrystalline structure of basaluminite, an aluminum hydroxide sulfate from acid mine drainage[J]. American Mineralogist, 2017, 102(12):2381-2389. [39] 周顺桂, 周立祥, 黄焕忠. 黄钾铁矾的生物合成与鉴定[J]. 光谱学与光谱分析, 2004,24(9):1140-1143. [40] ROSE S, GHAZI A M. Release of sorbed sulfate from iron oxyhydroxides precipitated from acid mine drainage associated[J]. Environmental Science & Technology, 1997, 31(7):2136-2140. [41] 邓立聪, 张亦飞, 陈芳芳, 等. 石灰乳中和模拟酸性废水形成的二水硫酸钙的晶粒形貌与粒度分布[J]. 过程工程学报, 2012, 12(2):259-264. [42] COETZEE H. Interactions between dolomite and acid mine drainage in the Witwatersrand-Results of field and laboratory studies and the implications for natural attenuation in the West Rand Goldfield:reliable mine water technology, IMWA[C]//USA, 2013. [43] 雷良奇, 林哲琼, 莫斌吉, 等. 酸性矿山废水中石灰岩包壳作用研究[J]. 岩石矿物学杂志, 2016, 35(3):553-562. [44] KEFNI K K, MSAGATI T M, MAREE J P, et al. Metals and sulphate removal from acid mine drainage in two steps via ferrite sludge and barium sulphate formation[J]. Minerals Engineering, 2015, 81:79-87. [45] CARRERO S, PEREZ L R, FERNANDEZ A, et al. The potential role of aluminium hydroxysulphates in the removal of contaminants in acid mine drainage[J]. Chemical Geology, 2015, 417:414-423. [46] MCGREGOR R G, BLOWES D W. The physical, chemical and mineralogical properties of three cemented layers within sulfide-bearing mine tailings[J]. Journal of Geochemical Exploration, 2002, 76(3):195-207. [47] FUKUSHI K, SATO T, YANASE N, et al. Arsenate sorption on schwertmannite[J]. Amer Mineral, 2004, 89(11/12):1728-1734. [48] 曹丽娜, 陈炳辉. 不同环境下AMD的次生矿物及其意义[C]//2018第四届能源, 环境与地球科学国际会议(ICEEES2018), 西安, 2018. [49] BIGHAM J M, NORDSTROM D K. Iron and aluminum hydroxysulfates from acid sulfate waters[J]. Reviews in Mineralogy & Geochemistry, 2000, 40(1):351-403. [50] 周跃飞, 谢越, 周立祥. 酸性矿山废水天然中和形成的富铁沉淀及其环境属性[J]. 环境科学, 2010, 31(6):1581-1588. [51] 龚自珍, 黄庆达. 碳酸盐岩岩块野外溶蚀速度试验[J]. 中国岩溶, 1984(2):22-31. [52] 夏雨, 吴攀, 张瑞雪, 等. 酸性矿山废水对碳酸盐岩侵蚀的影响[J]. 生态学杂志, 2018, 37(6):1702-1707. [53] 高澜, 聂继红, 韩宝平. 碳酸盐矿物的微观喀斯特研究[J]. 分析测试技术与仪器, 1995(2):33-37. [54] 刘再华, DREYBRODT W, 李华举. 灰岩和白云岩溶解速率控制机理的比较[J]. 地球科学(中国地质大学学报), 2006,31(3):411-416. [55] 岳林海, 贾志刚, 金达莱, 等. 镁离子存在下乙醇-水混合溶液中碳酸钙结晶行为的研究[J]. 化学学报, 2006,64(7):623-628. [56] MOODLEY I, SHERIDAN C M, KAPPELMEYER U, et al. Environmentally sustainable acid mine drainage remediation:research developments with a focus on waste/by-products[J]. Minerals Engineering, 2017, 8(16):8-22. [57] 龙中, 吴攀, 黄家琰, 等. 多级复氧反应-垂直流人工湿地深度处理煤矿酸性废水[J]. 环境工程学报, 2019, 13(6):1391-1399. [58] DEMCHEK J, SKOUSEN J, MORROW T. Treatment of acid mine drainage by four vertical flow wetlands in Pennsylvania[J]. Geochemistry Exploration Environment Analysis, 2001, 1:71-80. [59] JOHNSTON A, RUNKEL R L, NAVARRE A, et al. Exploration of diffuse and discrete sources of acid mine drainage to a headwater mountain stream in Colorado, USA[J]. Mine Water & the Environment, 2017, 36(4):463-478. [60] PYRBOT W, SHABONG L, SINGH O P. Neutralization of acid mine drainage contaminated water and ecorestoration of stream in a coal mining area of East Jaintia Hills, Meghalaya[J]. Mine Water & the Environment, 2019. 38(3):551-555. [61] AYORA C, CARABALLO M A, MACIAS F, et al. Acid mine drainage in the Iberian Pyrite Belt:2. Lessons learned from recent passive remediation experiences[J]. Environmental Science and Pollution Research, 2013, 20(11):7837-7853. [62] 杨绍章, 吴攀, 张瑞雪, 等. 有氧垂直折流式反应池处理煤矿酸性废水[J]. 环境工程学报, 2011,5(4):789-794. [63] LUDWIG R D, SMYTH D J A, BLOWES D W, et al. Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-compost PRB[J]. Environmental Science & Technology, 2009, 43(6):1970-1976. [64] LIU Y, MOU H, CHEN L, et al. Cr(Ⅵ)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material:environmental factors and effectiveness[J]. Journal of Hazardous Materials, 2015, 298(15):83-90. [65] WANG Y, PLEASANT S, JAIN P, et al. Calcium carbonate-based permeable reactive barriers for iron and manganese groundwater remediation at landfills[J]. Waste Management, 2016, 53(7):128-135. [66] CARABALLO M A, SANTOFIMIA E, JARVIS A P. Metal retention, mineralogy, and design considerations of a mature permeable reactive barrier (PRB) for acidic mine water drainage in Northumberland, U.K[J]. American Mineralogist, 2010, 95(11):1642-1649. [67] FARAGE R M P, QUINA M J, GANDO F L, et al. Kraft pulp mill dregs and grits as permeable reactive barrier for removal of copper and sulfate in acid mine drainage[J]. Scientific Reports, 2020, 10(1):4083-4093. [68] LUI L, LUI B H, LI W, et al. An effective way to treat the iron-rich acid mine drainage from coal mining in Guizhou's mountainous areas[J]. Journal of Mountain Science, 2020, 17(6):1345-1359. [69] PYRBOT W, SHABONG L, SINGH O P. Neutralization of acid mine drainage contaminated water and ecorestoration of stream in a coal mining area of East Jaintia Hills, Meghalaya[J]. Mine Water & the Environment, 2019, 38(3):551-555. [70] SANDIN W, LANGMAN J, MOBERLLY J. A review of acid rock drainage, seasonal flux of discharge and metal concentrations, and passive treatment system limitations[J]. International Journal of Mining, Reclamation and Environment, 2020, 35(1):34-47. [71] HEDIN R, WEAVER T, WOLFE N, et al. Passive treatment of acidic coal mine drainage:the anna s mine passive treatment complex[J]. Mine Water & the Environment, 2010, 29(3):165-175. [72] 张河民, 钟铭君, 吴启堂. 石灰石沟-堆肥湿地系统处理酸性矿山废水的研究[J]. 中国环境科学, 2015, 35(10):3032-3040. [73] ROYCHOWDHURY A, SARKAR D, DATTA R. Remediation of acid mine drainage-impacted water[J]. Current Pollution Reports, 2015, 1(3):131-141. [74] CRAFTON E, PRITCHARD C, GUO L, et al. Dynamics of Mn removal in an acid mine drainage treatment system over 13 years after installation[J]. Environmental Earth Sciences, 2019, 78(1):10-11. [75] POTGIETER S S, POTGIETER J H, MONAMA P, et al. Comparison of limestone, dolomite and fly ash as pre-treatment agents for acid mine drainage[J]. Minerals Engineering, 2006, 19(5):454-462. [76] KIRBY D. Effective Treatment Options for Acid Mine Drainage in the Coal Region of West Virginia[D]. Huntington WV:Marshall University, 2014. [77] OUAKIBI O, HAKKOU R, BENZAAZOUA M. Phosphate carbonated wastes used as drains for acidic mine drainage passive treatment[J]. Procedia Engineering, 2014, 83:407-414. [78] GENTY T, BUSSIERE B, POTVIN R, et al. Dissolution of calcitic marble and dolomitic rock in high iron concentrated acid mine drainage:application to anoxic limestone drains[J]. Environmental Earth Sciences, 2012, 66(8):2387-2401. [79] GIBERT O, JOSE L C, et al. Performance of a field-scale permeable reactive barrier based on organic substrate and zero-valent iron for in situ remediation of acid mine drainage[J]. Environmental Science & Pollution Research International, 2013, 20(11):7854-7862. [80] PAGNANELLI F, VIGGI C C, MAINELLI S, et al. Assessment of solid reactive mixtures for the development of biological permeable reactive barriers[J]. Journal of Hazardous Materials, 2009, 170(2/3):998-1005. [81] LABASTIDA I, AURORA A M, LARA R H, et al. Kinetic approach for the appropriate selection of indigenous limestones for acid mine drainage treatment with passive systems[J]. The Science of the Total Environment, 2019, 677(8):404-417. [82] 韩程辉, 刘文生. 地下水模拟系统(GMS)与矿井防治水[J]. 矿业安全与环保, 2005,32(1):25-26. [83] PEDRETTI D, MAYER K U, BECKIE R D. Controls of uncertainty in acid rock drainage predictions from waste rock piles examined through Monte-Carlo multicomponent reactive transport[J]. Stochastic Environmental Research and Risk Assessment, 2020, 34(1):219-233.
点击查看大图
计量
- 文章访问数: 514
- HTML全文浏览量: 69
- PDF下载量: 30
- 被引次数: 0