CHANGES OF ACUTE TOXICITY AND FLUORESCENCE SPECTRUM PROPERTIES OF PHENOL WASTEWATER TREATED BY OZONE ADVANCED OXIDATION
-
摘要: 研究了苯酚、间甲酚、邻甲酚和间苯二酚等酚类化合物在臭氧氧化过程中生物毒性的变化,揭示了反应中高毒性中间产物的荧光光谱特征。研究发现:4种酚类化合物被臭氧氧化后,生物毒性均呈先增加后减弱的趋势,其中臭氧氧化苯酚、间甲酚、邻甲酚和间苯二酚的生物毒性最大值分别是其初始毒性的16.7,26.3,34.8,3.2倍。利用Na2SO3还原臭氧氧化出水,急性生物毒性可得到高效去除,4种污染物毒性单位最高点的去除率分别为95.2%、94.5%、87.3%和44.4%,并且毒性单位的变化量和在295~305 nm激发波长下的荧光发射光谱峰强度的恢复量呈显著相关(P<0.05),可为构建基于光学特征的臭氧氧化出水中生物毒性的快速定量表征方法提供新思路。Abstract: In this study, the changes of biological toxicity during the ozonation of phenol, m-cresol, o-cresol and m-dihydroxybenzene were investigated, and the fluorescence spectra of highly toxic intermediates were revealed. It was found that the biological toxicity of four phenolic compounds firstly increased and then decreased after ozonation with the reaction time passed. The maximum biological toxicity of phenol, m-cresol, o-cresol and m-dihydroxybenzene was 16.7, 26.3, 34.8, 3.2 times of their initial toxicity, respectively. At the toxicity peaks, the toxic unit were removed by 95.2%, 94.5%, 87.3% and 44.4% respectively, after adding Na2SO3, and there was a significant correlation between the change of toxic unit and the recovery of fluorescence intensity peak at emission wavelength of 295~305 nm (P<0.05). It was speculated that the highly toxic intermediates formed during the ozonation of phenols were mainly oxidative carbonyl compounds. This study could provide new insight into the construction of rapid quantitative characterization of biological toxicity after ozonation based on the optical characteristics.
-
[1] GUIDO B, SILVIA B, CARLO R, et al. Technologies for the removal of phenol from fluid streams:a short review of recent developments[J]. Journal of Hazardous Materials, 2008, 160(2/3):265-288. [2] 陈璐,曾韬,李竹,杨林.臭氧氧化技术在高浓度有机废水处理中的应用研究[J].环境工程, 2014, 32(增刊1):121-124,187. [3] 严小平, 强弘. 臭氧的产生技术及应用[J].浙江树人大学学报(自然科学版), 2006, 6(1):33-37. [4] HU C Y, DU Y F, LIN Y L, et al. Kinetics of iohexol degradation by ozonation and formation of DBPs during post-chlorination[J]. Journal of Water Process Engineering, 2020,35:101200. [5] PAPAGEORGIOUS A, STYLIANOU S K, KAFFES P,et al. Effects of ozonation pretreatment on natural organic matter and wastewater derived organic matter-Possible implications on the formation of ozonation by-products[J]. Chemosphere, 2017, 170:33-40. [6] KLAVARIOTI M, MANTZAVINOS D, KASSINOS D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes[J]. Environment International, 2009, 35(2):1509-1518. [7] HOIGNÉ J, BADER H. The role of hydroxyl radical reactions in ozonation processes in aqueous solutions[J]. Water Research, 1976, 10(5):377-386. [8] HOIGNÉ J, BADER H. Rate constants of reactions of ozone with organic and inorganic compounds in water-Ⅰ:non-dissociating organic compounds[J]. Water Research, 1983, 17(2):173-183. [9] 查晓松. 生物毒性检测技术在饮用水健康安全评价中应用的研究进展[J]. 科技创新与应用, 2019(29):175-176. [10] 王士峰. 三维荧光技术在水质监测方面的应用与发展[J]. 山东工业技术, 2015(7):166. [11] ZHANG S, QUAN Y, SONG L,et al. Three-dimensional fluorescence characteristics of algal bio-oil[J]. Journal of Applied Spectroscopy, 2017, 84(3):508-511. [12] YANG G K, JONG H B, ALMA L M, et al. Efficient three dimensionalfluorescence measurements for characterization of binding properties in some plants[J]. Sensors and Actuators B:Chemical, 2017, 248:777-784. [13] YE Z, ZHAO Q L, ZHANG M H, et al. Acute toxicity evaluation of explosive wastewater bybacterial bioluminescence assays using a freshwater luminescent bacterium, Vibrio qinghaiensis sp. Nov.[J]. Journal of Hazardous Materials, 2011, 186(2/3):1351-1354. [14] MA M, TONG Z, WANG Z, et al. Acute toxicity bioassay using the freshwater luminescent Bacterium Vibrio-qinghaiensis sp. Nov.-Q67[J]. Bulletin of Environmental Contamination & Toxicology, 1999, 62(3):247-253. [15] SHANG N C, YU Y H, MA H W. Variation of toxicity during the ozonation of monochlorophenolic solutions[J]. Journal of Environmental Science and Health, Part A, 2002, 37(2):261-271. [16] HAN Q, DONG W Y, WANG H J, et al. Degradation of tetrabromobisphenol a by ozonation:performance, products, mechanism and toxicity[J]. Chemosphere, 2019, 235:701-712. [17] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environment Science & Technology, 2003, 37(24):5701-5710. [18] RINNAN A, ANDERSEN C M. Handling of first-order Rayleigh scatter in PARAFAC modelling of fluorescence excitation-emission data[J]. Chemometrics and Intelligent Laboratory Systems, 2005, 76(1):91-99. [19] DUAN W Y, MENG F P, CUI H W, et al. Ecotoxicity of phenol and cresols to aquatic organisms:a review[J]. Ecotoxicology and Environmental Safety, 2018, 157:441-456. [20] HOIGNÉ J, BADER H. Rate constants of reactions of ozone with organic and inorganic compounds in water-Ⅱ:dissociating organic compounds[J]. Water Research, 1983, 17(2):185-194. [21] 张彭义, 余刚, 蒋展鹏. 水中有机物与羟基自由基反应的QSAR分析[J]. 环境化学, 1999,18(3):232-237. [22] SERGEJ N, CLEMENS V S. Quantum chemical studies on the formation of ozone adducts to aromatic compounds in aqueous solution[J]. Ozone:Science & Engineering, 2010, 32(1):61-65. [23] JIANG J L, YUE X A, CHEN Q F, et al. Determination of ozonization reaction rateconstants of aromatic pollutants and QSAR study[J]. Bulletin of Environmental Contamintion and Toxicology, 2010,85:568-572. [24] BOROWSKA E, BOURGIN, HOLLENDER J, et al. Oxidation of cetirizine, fexofenadine and hydrochlorothiazide during ozonation:Kinetics and formation of transformation products[J]. Water Research, 2016, 94:350-362. [25] ELIZABETH A P L, ROBERT C C, MARCELO I G. Catechol oxidation by ozone and hydroxyl radicals at the air-water interface[J]. Environmental Science & Technology, 2014, 48(24):14352-14360. [26] PETER R. TENTSCHER, BOURGIN M, et al. Ozonation of para-substituted phenolic compounds yields p-benzoquinones, other cyclic α,β-unsaturated ketones, and substituted catechols[J]. Environmental Science & Technology, 2018, 52(8):4763-4773. [27] BOROWSKA E, BOURGIN M, HOLLENDER J, et al. Oxidation of cetirizine, fexofenadine and hydrochlorothiazide during ozonation:kinetics and formation of transformation products[J]. Water Research, 2016, 94:350-362. [28] TENTSCHER P R, MARC B AND URS V G. Ozonation of para-substituted phenolic compounds yields p-Benzoquinones, other cyclic α,β-unsaturated ketones, and substituted catechols[J]. Environmental Science & Technology, 2018, 52(8):4763-4773. [29] ROSSANA D V, TARA M S, NEIL V B. Contribution of quinones and ketones/aldehydes to the optical properties of humic substances (HS) and chromophoric dissolved organic matter (CDOM)[J]. Environmental Science & Technology, 2017, 51(23):13624-13632. [30] XIE P, ZHOU L, ZHANG Z, et al. Contribution to the reduction-induced fluorescence enhancement of natural organic matter:aromatic ketones outweigh quinones[J]. Luminescence, 2017, 32:1528-1534. [31] TARA M S, ROSSANA D V, MARLA B, et al. Combined effects of pH and borohydride reduction on optical properties of humic substances (HS):a comparison of optical models[J]. Environmental Science & Technology, 2019, 53(11):6310-6319. [32] SULZBERGER B, DURISCH-KAISER E. Chemical characterization of dissolved organic matter (DOM):a prerequisite for understanding UV-induced changes of DOM absorption properties and bioavailability[J]. Aquatic Sciences, 2009, 71:104-126. [33] WANG Y, MA J H. Quantitative determination of redoxactive carbonyls of natural dissolved organic matter[J]. Water Research, 2020, 185:116142. [34] MA J H, VECCHIO R D, KELLI S, et al. Optical properties of humic substances and CDOM:effects of borohydride reduction[J], Environmental Science & Technology, 2010, 44(14):5395-5402.
点击查看大图
计量
- 文章访问数: 244
- HTML全文浏览量: 50
- PDF下载量: 14
- 被引次数: 0