PREPARATION OF A FENTON-LIKE Cu-Co-Fe METALLIC OXIDE CATALYST AND ITS DEGRADATION PERFORMANCE ON TYPICAL REFRACTORY ORGANICS
-
摘要: 针对典型难生物降解污染物,为强化其在废水处理中的降解去除,开展了合成类芬顿催化剂及其对安替比林(ANT)及染料降解特性的研究。水热法合成的Cu1-xCoxFe2O4金属氧化物催化剂是一种具有尖晶石立方结构的磁性材料,比表面积为147.3~187.5 m2/g,饱和磁化值为17.2~62.3 EMU/g。随着Co含量逐渐增加,催化剂的催化活性有明显提高。所得最佳Cu0.25Co0.75Fe2O4催化剂的适用pH值为7~9,ANT初始浓度为50 mg/L,催化剂投加量为0.7 g/L和H2O2投加量为150 mmol/L的条件下,当反应初始pH=7时,对ANT去除率为93.1%;pH=9时去除率达到94.7%。不同类型的难降解有机物,如罗丹明B和酸性橙Ⅱ在该催化剂催化作用下也可实现有效降解。催化剂通过磁性回收再利用5次循环后,ANT去除率仍保持在80%以上,表明催化剂具有较好的稳定性和重复使用性。研究合成的类芬顿催化剂为高效去除废水中的难降解有机物提供了科学依据。Abstract: The aim of this study was to enhance the typical refractory organics degradation in the wastewater treatment by using A Fenton-like catalyst, which was synthesized and tested for the antipyrine and dyes degradation. The results demonstrated that the metallic oxide catalyst, Cu1-xCoxFe2O4 prepared by the hydrothermal method had a good crystal structure with the specific surface area of 147.3~187.5 m2/g, and the saturation magnetization value of 17.2~62.3 EMU/g. With the Co content increasing, the catalytic activity of the catalysts increased significantly. The optimized catalyst of Cu0.25Co0.75Fe2O4 had the applicable pH range of 7~9. With the initial antipyrine concentration of 50 mg/L, the catalyst dosage of 0.7 g/L and H2O2 dosage of 150 mmol/L, the antipyrine removal reached 93.1% at the initial pH=7 and 94.7% at the initial pH=9, respectively. Different types of refractory organic compounds, such as rhodamine B and acid orange Ⅱ, could also be effectively degraded with the catalyst. After 5 cycles of magnetic recovery and reuse of the catalyst, the antipyrine removal could be kept 80% above, indicating that the catalyst had good stability and reusability. The Fenton-like catalyst synthesized in this study provided scientific basis for efficient removal of refractory organic compounds from wastewater.
-
Key words:
- antipyrine /
- Fenton-like catalyst /
- metallic oxide /
- removal
-
[1] WEI S C, ZENG C P, LU Y B, et al. Degradation of antipyrine in the Fenton-like process with a La-doped heterogeneous catalyst[J]. Frontiers of Environmental Science & Engineering, 2019, 13(5):1-11. [2] MONTEAGUDO J M, DURÁN A, MARTÍNEZ M R, et al. Effect of reduced graphene oxide load into TiO2 P25 on the generation of reactive oxygen species in a solar photocatalytic reactor. Application to antipyrine degradation[J]. Chemical Engineering Journal, 2020, 380:122410. [3] 喻峥嵘. 东江下游某市饮用水中药品和个人护理用品分布及净化[D]. 北京:清华大学,2011. [4] 彭娟,杨永哲,杨宏勃,等.Fe-Mn-Ce/GAC催化剂制备及其在生物制药废水深度处理中的应用[J].环境工程,2019,37(12):113-119. [5] MONTEAGUDO J M, DURÁN A, SAN MARTÍN I, et al. Effect of sodium persulfate as electron acceptor on antipyrine degradation by solar TiO2 or TiO2/rGO photocatalysis[J]. Chemical Engineering Journal, 2019, 364:257-268. [6] SEGURA Y, CRUZ DEL ÁLAMO A, MUNOZ M, et al. A comparative study among catalytic wet air oxidation, Fenton, and Photo-Fenton technologies for the on-site treatment of hospital wastewater[J]. Journal of Environmental Management, 2021, 290:112624. [7] DURAN A, MONTEAGUDO J M, SANMARTIN I, et al. Solar photo-Fenton mineralization of antipyrine in aqueous solution[J]. Journal of Environmental Management, 2013, 130:64-71. [8] ZHU Y, FAN W H, FENG W Y, et al. A critical review on metal complexes removal from water using methods based on Fenton-like reactions:analysis and comparison of methods and mechanisms[J]. Journal of Hazardious Materials, 2021, 414:125517. [9] FENG J J, CHU C S, MA Z F. Fenton and Fenton-like catalysts for electrochemical immunoassay:a mini review[J]. Electrochem Commun, 2021, 125:106970. [10] WANG J L, TANG J T. Fe-based Fenton-like catalysts for water treatment:catalytic mechanisms and applications[J]. Journal of Molecular Liquids, 2021, 332:115755. [11] OUYANG Q, KOU F, TSANG P E, et al. Green synthesis of Fe-based material using tea polyphenols and its application as a heterogeneous Fenton-like catalyst for the degradation of lincomycin[J]. Joural of Cleaner Production, 2019, 232:1492-1498. [12] TAN C Q, GAO N Y, FU D F, et al. Efficient degradation of paracetamol with nanoscaled magnetic CoFe2O4 and MnFe2O4 as a heterogeneous catalyst of peroxymonosulfate[J]. Separation & Purification Technology, 2017, 175:47-57. [13] CHEN X, DENG F, LIU X, et al. Hydrothermal synthesis of MnO2/Fe(0) composites from Li-ion battery cathodes for destructing sulfadiazine by photo-Fenton process[J]. Science of the Total Environment, 2021, 774:145776. [14] WANG J L, TANG J T. Fe-based Fenton-like catalysts for water treatment:preparation, characterization and modification[J]. Chemosphere, 2021, 276:130177. [15] PATIL S R, KUMAR L, KOHLI G, et al. Validated HPLC method for concurrent determination of antipyrine, carbamazepine, furosemide and phenytoin and its application in assessment of drug permeability through Caco-2 cell monolayers[J]. Scientia Pharmaceutica, 2012, 80(1):89-100. [16] DAR M A, VARSHNEY D. Effect of d-block element Co2+ substitution on structural, Mössbauer and dielectric properties of spinel copper ferrites[J]. Journal of Magnetism & Magnetic Materials, 2017, 436:101-112. [17] SAMAVATI A, MUSTAFA M K, ISMAIL A F,et al. Copper-substituted cobalt ferrite nanoparticles:structural, optical and antibacterial properties[J]. Materials Express, 2016, 6(6):473-482. [18] SAMAVATI A, ISMAIL A F. Antibacterial properties of copper-substituted cobalt ferrite nanoparticles synthesized by co-precipitation method[J]. Particuology, 2017, 30(1):158-163. [19] BAYRAKDAR H, YALÇIN O, VURAL S, et al. Effect of different doping on the structural, morphological and magnetic properties for Cu doped nanoscale spinel type ferrites[J]. Journal of Magnetism & Magnetic Materials, 2013, 343(5):86-91. [20] ZHANG X Y, DING Y B, TANG H Q, et al. Degradation of bisphenol A by hydrogen peroxide activated with CuFeO2 microparticles as a heterogeneous Fenton-like catalyst:efficiency, stability and mechanism[J]. Chemical Engineering Journal, 2014, 236:251-262. [21] RAHIMI Z, SARAFRAZ H, Alahyarizadeh G, et al. Hydrothermal synthesis of magnetic CoFe2O4 nanoparticles and CoFe2O4/MWCNTs nanocomposites for U and Pb removal from aqueous solutions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317(1):431-442. [22] ZHANG S X, ZHAO X L, NIU H Y, et al. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds[J]. Journal of Hazardous Materials, 2009, 167(1/2/3):560-566. [23] LU H T, SUI M H, YUAN B J, et al. Efficient degradation of nitrobenzene by Cu-Co-Fe-LDH catalyzed peroxymonosulfate to produce hydroxyl radicals[J]. Chemical Engineering Journal, 2019, 357:140-149. [24] LI Z L, LYU J C, MING G. Synthesis of magnetic Cu/CuFe2O4 nanocomposite as a highly efficient Fenton-like catalyst for methylene blue degradation[J]. Journal of Materials Science, 2018, 53(21):15081-15095. [25] GUAN W, ZHAO D Y, KOU F Y, et al. Removal of norfloxacin by surface Fenton system (Mn Fe2O4/H2O2):kinetics, mechanism and degradation pathway[J]. Chemical Engineering Journal, 2018, 351:747-755. [26] 陈威, 杨冠, 程寒飞,等. 类芬顿法在含造纸中段水污水处理厂中的工程应用[J]. 环境工程, 2018, 36(8):35-38,47. [27] OLADIPO A A, IFEBAJO A O, GAZI M. Magnetic LDH-based CoO-NiFe2O4 catalyst with enhanced performance and recyclability for efficient decolorization of azo dye via Fenton-like reactions[J]. Applied Catalysis B-Environmental, 2019, 243:243-252.
点击查看大图
计量
- 文章访问数: 332
- HTML全文浏览量: 64
- PDF下载量: 36
- 被引次数: 0