中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类芬顿催化剂Cu-Co-Fe金属氧化物的制备及其对典型难降解有机物的去除

江淑文 韦士程 王婷 卢耀斌 刘广立 骆海萍 张仁铎

江淑文, 韦士程, 王婷, 卢耀斌, 刘广立, 骆海萍, 张仁铎. 类芬顿催化剂Cu-Co-Fe金属氧化物的制备及其对典型难降解有机物的去除[J]. 环境工程, 2021, 39(11): 77-82,118. doi: 10.13205/j.hjgc.202111009
引用本文: 江淑文, 韦士程, 王婷, 卢耀斌, 刘广立, 骆海萍, 张仁铎. 类芬顿催化剂Cu-Co-Fe金属氧化物的制备及其对典型难降解有机物的去除[J]. 环境工程, 2021, 39(11): 77-82,118. doi: 10.13205/j.hjgc.202111009
JIANG Shu-wen, WEI Shi-cheng, WANG Ting, LU Yao-bin, LIU Guang-li, LUO Hai-ping, ZHANG Ren-duo. PREPARATION OF A FENTON-LIKE Cu-Co-Fe METALLIC OXIDE CATALYST AND ITS DEGRADATION PERFORMANCE ON TYPICAL REFRACTORY ORGANICS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 77-82,118. doi: 10.13205/j.hjgc.202111009
Citation: JIANG Shu-wen, WEI Shi-cheng, WANG Ting, LU Yao-bin, LIU Guang-li, LUO Hai-ping, ZHANG Ren-duo. PREPARATION OF A FENTON-LIKE Cu-Co-Fe METALLIC OXIDE CATALYST AND ITS DEGRADATION PERFORMANCE ON TYPICAL REFRACTORY ORGANICS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 77-82,118. doi: 10.13205/j.hjgc.202111009

类芬顿催化剂Cu-Co-Fe金属氧化物的制备及其对典型难降解有机物的去除

doi: 10.13205/j.hjgc.202111009
基金项目: 

国家重点研发计划课题(2017YFB0903701,2017YFB0903703)。

详细信息
    作者简介:

    江淑文(1977-),女,工程师,硕士,主要研究方向为电站生态环境保护和水土保持。13926159403@qq.com

    通讯作者:

    韦士程(1991-),男,助理工程师,主要研究方向为工业废水处理技术。365058642@qq.com

PREPARATION OF A FENTON-LIKE Cu-Co-Fe METALLIC OXIDE CATALYST AND ITS DEGRADATION PERFORMANCE ON TYPICAL REFRACTORY ORGANICS

  • 摘要: 针对典型难生物降解污染物,为强化其在废水处理中的降解去除,开展了合成类芬顿催化剂及其对安替比林(ANT)及染料降解特性的研究。水热法合成的Cu1-xCoxFe2O4金属氧化物催化剂是一种具有尖晶石立方结构的磁性材料,比表面积为147.3~187.5 m2/g,饱和磁化值为17.2~62.3 EMU/g。随着Co含量逐渐增加,催化剂的催化活性有明显提高。所得最佳Cu0.25Co0.75Fe2O4催化剂的适用pH值为7~9,ANT初始浓度为50 mg/L,催化剂投加量为0.7 g/L和H2O2投加量为150 mmol/L的条件下,当反应初始pH=7时,对ANT去除率为93.1%;pH=9时去除率达到94.7%。不同类型的难降解有机物,如罗丹明B和酸性橙Ⅱ在该催化剂催化作用下也可实现有效降解。催化剂通过磁性回收再利用5次循环后,ANT去除率仍保持在80%以上,表明催化剂具有较好的稳定性和重复使用性。研究合成的类芬顿催化剂为高效去除废水中的难降解有机物提供了科学依据。
  • [1] WEI S C, ZENG C P, LU Y B, et al. Degradation of antipyrine in the Fenton-like process with a La-doped heterogeneous catalyst[J]. Frontiers of Environmental Science & Engineering, 2019, 13(5):1-11.
    [2] MONTEAGUDO J M, DURÁN A, MARTÍNEZ M R, et al. Effect of reduced graphene oxide load into TiO2 P25 on the generation of reactive oxygen species in a solar photocatalytic reactor. Application to antipyrine degradation[J]. Chemical Engineering Journal, 2020, 380:122410.
    [3] 喻峥嵘. 东江下游某市饮用水中药品和个人护理用品分布及净化[D]. 北京:清华大学,2011.
    [4] 彭娟,杨永哲,杨宏勃,等.Fe-Mn-Ce/GAC催化剂制备及其在生物制药废水深度处理中的应用[J].环境工程,2019,37(12):113-119.
    [5] MONTEAGUDO J M, DURÁN A, SAN MARTÍN I, et al. Effect of sodium persulfate as electron acceptor on antipyrine degradation by solar TiO2 or TiO2/rGO photocatalysis[J]. Chemical Engineering Journal, 2019, 364:257-268.
    [6] SEGURA Y, CRUZ DEL ÁLAMO A, MUNOZ M, et al. A comparative study among catalytic wet air oxidation, Fenton, and Photo-Fenton technologies for the on-site treatment of hospital wastewater[J]. Journal of Environmental Management, 2021, 290:112624.
    [7] DURAN A, MONTEAGUDO J M, SANMARTIN I, et al. Solar photo-Fenton mineralization of antipyrine in aqueous solution[J]. Journal of Environmental Management, 2013, 130:64-71.
    [8] ZHU Y, FAN W H, FENG W Y, et al. A critical review on metal complexes removal from water using methods based on Fenton-like reactions:analysis and comparison of methods and mechanisms[J]. Journal of Hazardious Materials, 2021, 414:125517.
    [9] FENG J J, CHU C S, MA Z F. Fenton and Fenton-like catalysts for electrochemical immunoassay:a mini review[J]. Electrochem Commun, 2021, 125:106970.
    [10] WANG J L, TANG J T. Fe-based Fenton-like catalysts for water treatment:catalytic mechanisms and applications[J]. Journal of Molecular Liquids, 2021, 332:115755.
    [11] OUYANG Q, KOU F, TSANG P E, et al. Green synthesis of Fe-based material using tea polyphenols and its application as a heterogeneous Fenton-like catalyst for the degradation of lincomycin[J]. Joural of Cleaner Production, 2019, 232:1492-1498.
    [12] TAN C Q, GAO N Y, FU D F, et al. Efficient degradation of paracetamol with nanoscaled magnetic CoFe2O4 and MnFe2O4 as a heterogeneous catalyst of peroxymonosulfate[J]. Separation & Purification Technology, 2017, 175:47-57.
    [13] CHEN X, DENG F, LIU X, et al. Hydrothermal synthesis of MnO2/Fe(0) composites from Li-ion battery cathodes for destructing sulfadiazine by photo-Fenton process[J]. Science of the Total Environment, 2021, 774:145776.
    [14] WANG J L, TANG J T. Fe-based Fenton-like catalysts for water treatment:preparation, characterization and modification[J]. Chemosphere, 2021, 276:130177.
    [15] PATIL S R, KUMAR L, KOHLI G, et al. Validated HPLC method for concurrent determination of antipyrine, carbamazepine, furosemide and phenytoin and its application in assessment of drug permeability through Caco-2 cell monolayers[J]. Scientia Pharmaceutica, 2012, 80(1):89-100.
    [16] DAR M A, VARSHNEY D. Effect of d-block element Co2+ substitution on structural, Mössbauer and dielectric properties of spinel copper ferrites[J]. Journal of Magnetism & Magnetic Materials, 2017, 436:101-112.
    [17] SAMAVATI A, MUSTAFA M K, ISMAIL A F,et al. Copper-substituted cobalt ferrite nanoparticles:structural, optical and antibacterial properties[J]. Materials Express, 2016, 6(6):473-482.
    [18] SAMAVATI A, ISMAIL A F. Antibacterial properties of copper-substituted cobalt ferrite nanoparticles synthesized by co-precipitation method[J]. Particuology, 2017, 30(1):158-163.
    [19] BAYRAKDAR H, YALÇIN O, VURAL S, et al. Effect of different doping on the structural, morphological and magnetic properties for Cu doped nanoscale spinel type ferrites[J]. Journal of Magnetism & Magnetic Materials, 2013, 343(5):86-91.
    [20] ZHANG X Y, DING Y B, TANG H Q, et al. Degradation of bisphenol A by hydrogen peroxide activated with CuFeO2 microparticles as a heterogeneous Fenton-like catalyst:efficiency, stability and mechanism[J]. Chemical Engineering Journal, 2014, 236:251-262.
    [21] RAHIMI Z, SARAFRAZ H, Alahyarizadeh G, et al. Hydrothermal synthesis of magnetic CoFe2O4 nanoparticles and CoFe2O4/MWCNTs nanocomposites for U and Pb removal from aqueous solutions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317(1):431-442.
    [22] ZHANG S X, ZHAO X L, NIU H Y, et al. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds[J]. Journal of Hazardous Materials, 2009, 167(1/2/3):560-566.
    [23] LU H T, SUI M H, YUAN B J, et al. Efficient degradation of nitrobenzene by Cu-Co-Fe-LDH catalyzed peroxymonosulfate to produce hydroxyl radicals[J]. Chemical Engineering Journal, 2019, 357:140-149.
    [24] LI Z L, LYU J C, MING G. Synthesis of magnetic Cu/CuFe2O4 nanocomposite as a highly efficient Fenton-like catalyst for methylene blue degradation[J]. Journal of Materials Science, 2018, 53(21):15081-15095.
    [25] GUAN W, ZHAO D Y, KOU F Y, et al. Removal of norfloxacin by surface Fenton system (Mn Fe2O4/H2O2):kinetics, mechanism and degradation pathway[J]. Chemical Engineering Journal, 2018, 351:747-755.
    [26] 陈威, 杨冠, 程寒飞,等. 类芬顿法在含造纸中段水污水处理厂中的工程应用[J]. 环境工程, 2018, 36(8):35-38

    ,47.
    [27] OLADIPO A A, IFEBAJO A O, GAZI M. Magnetic LDH-based CoO-NiFe2O4 catalyst with enhanced performance and recyclability for efficient decolorization of azo dye via Fenton-like reactions[J]. Applied Catalysis B-Environmental, 2019, 243:243-252.
  • 加载中
计量
  • 文章访问数:  276
  • HTML全文浏览量:  52
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-14
  • 网络出版日期:  2022-01-26

目录

    /

    返回文章
    返回