中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

好氧与厌氧交替加速2,4,6-三氯酚的生物降解

梁斌 冯世敏 张永明

梁斌, 冯世敏, 张永明. 好氧与厌氧交替加速2,4,6-三氯酚的生物降解[J]. 环境工程, 2021, 39(11): 83-88. doi: 10.13205/j.hjgc.202111010
引用本文: 梁斌, 冯世敏, 张永明. 好氧与厌氧交替加速2,4,6-三氯酚的生物降解[J]. 环境工程, 2021, 39(11): 83-88. doi: 10.13205/j.hjgc.202111010
LIANG Bin, FENG Shi-min, ZHANG Yong-ming. ACCELERATION OF 2,4,6-TRICHLOROPHENOL BIODEGRADATION THROUGH AEROBIC AND ANAEROBIC CONDITION ALTERNATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 83-88. doi: 10.13205/j.hjgc.202111010
Citation: LIANG Bin, FENG Shi-min, ZHANG Yong-ming. ACCELERATION OF 2,4,6-TRICHLOROPHENOL BIODEGRADATION THROUGH AEROBIC AND ANAEROBIC CONDITION ALTERNATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 83-88. doi: 10.13205/j.hjgc.202111010

好氧与厌氧交替加速2,4,6-三氯酚的生物降解

doi: 10.13205/j.hjgc.202111010
详细信息
    作者简介:

    梁斌(1967-),男,研究方向为工业废水治理。zghapylb@163.com

    通讯作者:

    张永明,男,教授,研究方向为水污染控制工程。zhym@shnu.edu.cn

ACCELERATION OF 2,4,6-TRICHLOROPHENOL BIODEGRADATION THROUGH AEROBIC AND ANAEROBIC CONDITION ALTERNATION

  • 摘要: 2,4,6-trichlorophenol(TCP)是一种较难生物降解的有机化合物,而TCP还原脱氯是其生物降解的关键,该过程通常在厌氧条件下进行。TCP对位的氯离子比邻位难脱除,所形成的中间产物4-氯酚(4-CP)在厌氧条件下很难得到进一步降解。然而,此时将反应体系切换成好氧条件时4-CP则可得到有效降解。基于好氧和厌氧交替可共存的特点,采用垂直折流板式生物反应器降解TCP。相比单纯厌氧降解,厌氧和好氧交替模式可明显加速TCP的生物降解。对于初始浓度为50 μmol/L的TCP,完全去除的时间可从34 h缩短至12 h。该运行模式可缓解中间产物对TCP降解的抑制,4-CP的代谢产物苯酚在好氧条件下可得到迅速降解,缓解了其抑制作用,加速TCP在厌氧条件下的生物降解。
  • [1] WANG J G, SUN Z R. Exploring the effects of carbon source level on the degradation of 2,4,6-trichlorophenol in the co-metabolism process[J]. Journal of Hazardous Materials, 2020, 392, 122293.
    [2] KAVITHA D, JENISHA J M J. Treatment of 2,4,6-trichlorophenol using agricultural by-products[J]. Materials Today:Proceedings, 2020, 33:4385-4390.
    [3] ALI M H H, AL-QAHTANI K M, EL-SAYED S M. Enhancing photodegradation of 2,4,6 trichlorophenol and organic pollutants in industrial effluents using nanocomposite of TiO2 doped with reduced graphene oxide[J]. Egyptian Journal of Aquatic Research, 2019, 45:321-328.
    [4] ZHU M Y, LU J, ZHAO Y T, et al. Zhu. Photochemical reactions between superoxide ions and 2,4,6-trichlorophenol in atmospheric aqueous environments[J]. Chemosphere, 2021, 279:130537.
    [5] LI W, WANG Z M, LIAO H Y, et al. Enhanced degradation of 2,4,6-trichlorophenol by activated peroxymonosulfate with sulfur doped copper manganese bimetallic oxides[J]. Chemical Engineering Journal, 2021, 417:128121.
    [6] 施汉昌,王颖哲,韩英健,等. 补充碳源对厌氧生物处理2,4,6-三氯酚的影响[J]. 环境科学, 1999, 20(5):11-15.
    [7] 李蓉洁,白琪,陈斌,等.添加有机酸加速2,4,6-三氯酚的生物降解[J]. 河南城建学院学报,2014,24(4):47-51.
    [8] 张雨婷, 张辰媛, 朱格, 等. 蜂窝陶瓷为生物膜载体的光催化/生物一体式反应器降解2,4,6-三氯酚[J]. 陶瓷学报, 2017, 38(5):79-82.
    [9] MARSOLEK M D, RITTMANN E B. Biodegradation of 2, 4,5-trichlorophenol by mixed microbial communities:biorecalcitrance, inhibition, and adaptation[J]. Biodegradation, 2007, 18(3):351-358.
    [10] ZHANG Y M, SUN X, CHEN L J, et al. Integrated photocatalytic-biological reactor for accelerated 2,4,6-trichlorophenol degradation and mineralization[J]. Biodegradation, 2012, 23(1):189-198.
    [11] ZHANG Y M, PU X J, FANG M M, et al. 2,4,6-trichlorophenol (TCP) photobiodegradation and its effect on community structure[J]. Biodegradation, 2012, 23(4):575-583.
    [12] LIN X Q, LI Z L, LIANG B, et al. Accelerated microbial reductive dechlorination of 2,4,6-trichlorophenol by weak electrical stimulation[J]. Water Research, 2019, 162:236-245.
    [13] CHOI J H, KIN Y H, CHOI S J. Reductive dechlorination and biodegradation of 2,4,6-trichlorophenol using sequential permeable reactive barriers:laboratory studies[J]. Chemosphere, 2007, 67(8):1551-1557.
    [14] SONG J X, ZHAO Q, GUO J, et al. The microbial community responsible for dechlorination and benzene ring opening during anaerobic degradation of 2,4,6-trichlorophenol[J]. Science of the Total Environment, 2018, 651:1368-1376.
    [15] FRICKER A D, LAROE S L, SHEA M E, et al. Dehalococcoides mccartyi Strain JNA dechlorinates multiple chlorinated phenols including pentachlorophenol and harbors at least 19 reductive dehalogenase homologous genes[J]. Environmental Science & Technology, 2014, 48(24):14300-14308.
    [16] YAN N, AN M, CHU J Y, et al. More rapid dechlorination of 2,4-dichlorophenol using acclimated bacteria[J]. Bioresource Technology, 2021, 326:124738.
    [17] ZHU M C, LI N, LU Y Z, et al. The performance and microbial communities of an anaerobic membrane bioreactor for treating fluctuating 2-chlorophenol wastewater[J]. Bioresource Technology, 2020, 317:124001.
    [18] KAMALI M, GAMEIRO T, COSTA M E, et al. Enhanced biodegradation of phenolic wastewaters with acclimatized activated sludge:a kinetic study[J]. Chemical Engineering Journal, 2019, 378:122186.
    [19] AILIJIANG N, CHANG J, LIANG P, et al. Electrical stimulation on biodegradation of phenolics in a novel anaerobic-aerobic-coupled upflow bioelectrochemical reactor[J]. Chemical Engineering Journal, 2021, 421:127840.
    [20] RITTMANN B E, MCCARTY P L. Environmental Biotechnology:principles and Applications, 2nd ed.[M]. McGraw-Hill Book Co., New York, 2020.
    [21] SONG J X, WANG W B, LI R J, et al. UV photolysis for enhanced phenol biodegradation in the presence of 2,4,6-trichlorophenol (TCP)[J]. Biodegradation, 2016, 27(1):59-67.
    [22] CAO L F, ZHANG C Y, ZOU S S, et al. Simultaneous anaerobic and aerobic transformations of nitrobenzene[J]. Journal of Environmental Management, 2018, 226:264-269.
    [23] ZHANG Y M, WANG L, RITTMANN B E. Integrated photocatalytic-biological reactor for accelerated phenol mineralization[J]. Applied Microbiology and Biotechnology, 2010, 86(6):1977-1985.
    [24] ZHANG Y M, LIU H, SHI W, et al. Photobiodegradation of phenol with ultraviolet irradiation of new ceramic biofilm carriers[J]. Biodegradation, 2010, 21(6):881-887.
  • 加载中
计量
  • 文章访问数:  153
  • HTML全文浏览量:  14
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08
  • 网络出版日期:  2022-01-26

目录

    /

    返回文章
    返回