中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

制药污泥热解制备生物炭及对制药废水的吸附处理性能分析

吴钦岳 刘和 郑炜 刘宏波 郑志永 张衍 张翠翠

吴钦岳, 刘和, 郑炜, 刘宏波, 郑志永, 张衍, 张翠翠. 制药污泥热解制备生物炭及对制药废水的吸附处理性能分析[J]. 环境工程, 2021, 39(11): 103-109. doi: 10.13205/j.hjgc.202111013
引用本文: 吴钦岳, 刘和, 郑炜, 刘宏波, 郑志永, 张衍, 张翠翠. 制药污泥热解制备生物炭及对制药废水的吸附处理性能分析[J]. 环境工程, 2021, 39(11): 103-109. doi: 10.13205/j.hjgc.202111013
WU Qin-yue, LIU He, ZHENG Wei, LIU Hong-bo, ZHENG Zhi-yong, ZHANG Yan, ZHANG Cui-cui. PREPARATION OF BIOCHAR BY PYROLYSIS OF PHARMACEUTICAL SLUDGE AND ITS ADSORPTION PERFORMANCE IN TREATING PHARMACEUTICAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 103-109. doi: 10.13205/j.hjgc.202111013
Citation: WU Qin-yue, LIU He, ZHENG Wei, LIU Hong-bo, ZHENG Zhi-yong, ZHANG Yan, ZHANG Cui-cui. PREPARATION OF BIOCHAR BY PYROLYSIS OF PHARMACEUTICAL SLUDGE AND ITS ADSORPTION PERFORMANCE IN TREATING PHARMACEUTICAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 103-109. doi: 10.13205/j.hjgc.202111013

制药污泥热解制备生物炭及对制药废水的吸附处理性能分析

doi: 10.13205/j.hjgc.202111013
基金项目: 

浙江省重点研发计划(2019C03106);国家自然科学基金(51938001)。

详细信息
    作者简介:

    吴钦岳(1996-),男,硕士生,主要研究方向为有机固废资源化处理。wuqinyuejn@126.com

    通讯作者:

    张衍(1984-),男,副研究员,主要研究方向为有机固废资源化处理。yanzhang@jiangnan.edu.cn

PREPARATION OF BIOCHAR BY PYROLYSIS OF PHARMACEUTICAL SLUDGE AND ITS ADSORPTION PERFORMANCE IN TREATING PHARMACEUTICAL WASTEWATER

  • 摘要: 利用制药污泥热解制备生物炭,考察ZnCl2活化条件对生物炭吸附性能的影响,并探究生物炭对制药废水的吸附处理特性。提高ZnCl2活化剂的浓度和浸渍比均可提升制药污泥生物炭的吸附性能,5 mol/L ZnCl2活化剂在1:1浸渍比下获得的生物炭的比表面积达到534.91 m2/g,碘吸附值和苯酚吸附值分别达到674.61,119.12 mg/g。制药污泥生物炭对制药废水COD吸附动力学与叶洛维奇模型和拟二级吸附动力学模型较为相符,1 h内为生物炭对COD的快速吸附阶段。制药污泥生物炭投加量的提升,可提高废水中污染物去除率,在50 g/L生物炭投加量下吸附1 h,可实现66.3% COD和61.8%可吸附有机卤素(AOX)的去除。而多级吸附可在较低投加量下实现更好的污染物去除效果,1 g/L投加量下进行6级吸附可去除72.8%的COD和65.2%的AOX。这揭示了制药污泥在ZnCl2活化条件下热解可制备高吸附性能生物炭,并展现了出色的制药废水吸附处理效果。
  • [1] 颉亚玮.杭州湾可吸附有机卤素污染溯源和源减排工艺研究[D].北京:清华大学,2017.
    [2] CHEN Z B, REN N Q, WANG A J, et al. A novel application of TPAD-MBR system to the pilot treatment of chemical synthesis-based pharmaceutical wastewater[J]. Water Research,2008,42(13):3385-3392.
    [3] le PAGE G, GUNNARSSON L, SNAPE J, et al. Integrating human and environmental health in antibiotic risk assessment:a critical analysis of protection goals, species sensitivity and antimicrobial resistance[J]. Environment International,2017,109:155-169.
    [4] XIE Y W, CHEN L J, LIU R. AOX contamination status and genotoxicity of AOX-bearing pharmaceutical wastewater[J]. Journal of environmental sciences (China) 2017; 52:170-177.
    [5] LIU H D, XU G R, LI G B. The characteristics of pharmaceutical sludge-derived biochar and its application for the adsorption of tetracycline[J]. Science of the Total Environment,2020,747:141492.
    [6] GOLET E M, XIFRA I, SIEGRIST H, et al. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil[J]. Environmental Science & Technology,2003,37(15):3243-3249.
    [7] KIM S, EICHHORN P, JENSEN J N, et al. Removal of antibiotics in wastewater:effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process[J]. Environmental Science & Technology,2005,39(15):5816-5823.
    [8] LE-MINH N, KHAN S J, DREWES J E, et al. Fate of antibiotics during municipal water recycling treatment processes[J]. Water Research,2010,44(15):4295-4323.
    [9] 郭丹丹.生物炭和改性生物炭对重金属Pb(Ⅱ)、Cd(Ⅱ)的吸附性能研究[D].西安:西安科技大学,2020.
    [10] LIU H D, XU G R, LI G B. Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline[J]. Journal of Colloid and Interface Science,2021,587:271-278.
    [11] JIANG B N, LIN Y Q, MBOG J C. Biochar derived from swine manure digestate and applied on the removals of heavy metals and antibiotics[J]. Bioresource Technology,2018,270:603-611.
    [12] REGKOUZAS P, DIAMADOPOULOS E. Adsorption of selected organic micro-pollutants on sewage sludge biochar[J]. Chemosphere,2019,224:840-851.
    [13] MEI Y L, XU J, ZHANG Y, et al. Effect of Fe-N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution[J]. Bioresource Technology,2021,325:124732.
    [14] NUNTHAPRECHACHAN T, PENGPANICH S, HUNSOM M. Adsorptive desulfurization of dibenzothiophene by sewage sludge-derived activated carbon[J]. Chemical Engineering Journal,2013,228:263-271.
    [15] DEVI P, SAROHA A K. Improvement in performance of sludge-based adsorbents by controlling key parameters by activation/modification:a critical review[J]. Critical Reviews in Environmental Science and Technology,2016,46(21/22):1704-1743.
    [16] 杨艳琴, 崔敏华, 任屹罡, 等. 热解温度诱导下污泥生物炭特性和吸附能力相关性[J]. 深圳大学学报(理工版),2020,37(2):194-201.
    [17] 张双圣, 刘汉湖, 张双全, 等. 污泥吸附剂的制备及其对含Pb(2+)模拟废水的吸附特性研究[J]. 环境科学学报,2011,31(7):1403-1412.
    [18] 陈丽群, 张红杰, 朱荣耀, 等. 木质素/Fenton污泥基磁性活性炭对亚甲基蓝和苯酚吸附特性的研究[J]. 中国造纸,2020,39(5):23-28.
    [19] 胡淑宜, 黄碧中, 林启模. 热分析法研究磷酸活化法的热解过程[J]. 林产化学与工业,1998(2):53-58.
    [20] XU Z Y, XIANG Y J, ZHOU H, et al. Manganese ferrite modified biochar from vinasse for enhanced adsorption of levofloxacin:effects and mechanisms[J]. Environmental Pollution,2020:115968.
    [21] LI J, PAN L J, YU G W, et al. Synthesis of an easily recyclable and safe adsorbent from sludge pyrochar for ciprofloxacin adsorption[J]. Environmental Research,2021,192:110258.
    [22] GOPINATH A, DIVYAPRIYA G, SRIVASTAVA V, et al. Conversion of sewage sludge into biochar:a potential resource in water and wastewater treatment[J]. Environmental Research,2021,194:110656.
    [23] 吴春山, 黄富文, 刘文伟, 等. 污泥基生物炭对垃圾渗滤液的吸附性能研究[J]. 环境工程,2017,35(2):1-4.
    [24] 杨招艺, 陶家林, 王瑞露, 等. 热解温度对污泥碳基材料表面性质及吸附性能的影响[J]. 环境工程学报2019,13(11):2711-2721.
    [25] 朱彦卓. 基于环境中大环内酯类抗生素残留选择性分离的生物材料印迹吸附剂制备及吸附行为和机理研究[D].镇江:江苏大学,2016.
    [26] 张文轩. 改性秸秆对污水中染料物质的吸附脱除研究[D].南京:南京大学,2012.
  • 加载中
计量
  • 文章访问数:  172
  • HTML全文浏览量:  45
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-15
  • 网络出版日期:  2022-01-26

目录

    /

    返回文章
    返回