CATALYTIC OZONATION OF O-CHLOROPHENOL WITH MnOx/GAC SYNTHESIZED VIA ACID-THERMAL OXIDATION MODIFICATION METHOD
-
摘要: 通过酸热氧化修饰法在活性炭上负载锰氧化物,制得MnOx/GAC催化剂,并研究其催化臭氧氧化降解邻氯酚的性能。结果表明:在催化剂投加量为0.1 g/L,臭氧浓度为20 mg/L,气体流量为0.5 L/min,初始pH为6的条件下,反应120 min时,邻氯酚的TOC去除率可达到95%,比单纯臭氧氧化提高了55百分点。在一定范围内,增加臭氧浓度和气体流量可以加快反应速率,提高TOC去除率,但通入过量的臭氧反而会降低TOC去除率。探究了无机阴离子对于体系TOC去除率的影响,研究发现:1 mmol/L的NO3-、SO42-、Cl-对TOC去除率无明显影响,1 mmol/L Br-使体系TOC去除率降低了10%左右。pH是影响体系氧化能力的重要因素,在酸性条件下的TOC去除率远高于碱性条件下,这可能与催化剂表面官能团的作用和反应体系中无机碳的积累有关。此外,提出了催化剂表面羟基存在形式与pH之间的关系,以及不同羟基存在形式下催化臭氧分解产生的活性物种。Abstract: MnOx/GAC catalyst was prepared by acid-thermal oxidation modification method loading manganese oxide on activated carbon, and the performance of its catalytic oxidation degrading o-chlorophenol was studied. Results showed that when the catalyst dosage was 0.1 g/L, the ozone concentration was 20 mg/L, the gas flow was 0.5 L/min, and the initial pH was 6, the TOC removal rate of o-chlorophenol reached 95% after 120 min, which was 55% higher than ozonation alone. The reaction rate and TOC removal rate was greater when increasing ozone concentration and gas flow within a certain range, since excessive ozone might lower the TOC removal rate. Effects of different ions on TOC removal rate was studied. No significant difference was noticed on TOC removal rate with the addition of 1 mmol/L NO3-, SO42-, Cl-, separately. TOC removal was decreased 10% with the addition of 1 mmol/L Br-. pH was an important factor affecting the oxidation capacity of the system. Under acidic conditions, TOC removal rate was much higher than in alkaline conditions, which might be related to the behavior of the catalyst surface functional group and the accumulation of inorganic carbon in the system. In addition, the relationship between the form of surface hydroxyl groups on the catalyst and pH was proposed, and the formation pathways of active species under different circumstances were speculated.
-
[1] El H K, KALNINA D, TURKS M, et al. Enhanced degradation of an azo dye by catalytic ozonation over Ni-containing layered double hydroxide nanocatalyst[J]. Separation and Purification Technology, 2019, 210:764-774. [2] 龚小芝, 郦和生, 邱小云, 等. 催化臭氧氧化技术及其应用[J]. 化工环保, 2020, 40(4):353-357. [3] 杨文玲, 王坦. 臭氧催化剂催化机理及其应用研究进展[J]. 应用化工, 2020, 49(11):2936-2940. [4] LU X H, ZHAI T, ZHANG X H, et al. WO3-x@Au@MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors[J]. Advanced Materials, 2012, 24(7):938-944. [5] TAUJALE S, BARATTA L R, HUANG J Z, et al. Interactions in ternary mixtures of MnO2, Al2O3, and natural organic matter (NOM) and the impact on MnO2 oxidative reactivity[J]. Environmental Science & Technology, 2016, 50(5):2345-2353. [6] 游洋洋, 卢学强, 许丹宇, 等. 多相催化臭氧化水处理技术研究进展[J]. 环境工程, 2014, 32(1):37-41,54. [7] 童琴, 董亚梅, 赵昆峰, 等. 负载型稀土臭氧氧化催化剂在水处理中的应用进展[J]. 化工进展, 2019, 38(增刊1):226-231. [8] 吴耀国, 赵大为, 焦剑, 等. 臭氧化的负载型非均相催化剂制备及其作用机理[J]. 材料导报, 2005(10):8-11. [9] 赵俊娜, 李再兴, 刘艳芳, 等. Mn/γ-Al2O3催化剂的制备及头孢合成废水的催化臭氧氧化法深度处理[J]. 化工环保, 2014, 34(5):475-480. [10] 张兰河, 郭琳, 李佳宁, 等. Fe2O3/改性沸石催化剂的制备及其催化臭氧氧化对氯苯酚[J]. 化工进展, 2020, 39(8):3086-3094. [11] 高明龙, 夏立全, 陈贵锋, 等. 臭氧催化氧化深度处理亚麻生产废水实验研究[J]. 水处理技术, 2020, 46(6):100-102,6. [12] 肖早早, 李沛怡, 吴波, 等. MnO2/γ-Al2O3催化剂的制备及催化臭氧氧化苯酚废水[J]. 应用化工, 2020, 49(5):1143-1147. [13] LI L S, YE W Y, ZHANG Q Y, et al. Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon[J]. Journal of Hazardous Materials, 2009, 170(1):411-416. [14] 龚小芝, 郦和生, 邱小云, 等. 非均相臭氧氧化催化剂的制备及表征[J]. 石油化工, 2020, 49(8):743-747. [15] 刘梦, 戚秀芝, 张科亭, 等. 非均相催化臭氧氧化法深度处理染料废水[J]. 环境污染与防治, 2018, 40(5):572-576,615. [16] 吴俊, 罗丹, 全学军. 臭氧催化剂的制备及其应用研究进展[J]. 化工进展, 2017, 36(3):944-950. [17] OLANIRAN A O, IGBINOSA E O. Chlorophenols and other related derivatives of environmental concern:properties, distribution and microbial degradation processes[J]. Chemosphere, 2011, 83(10):1297-1306. [18] USEPA, Water Quality Criteria Summary. Ecological Risk Assessment Branch (WH-585) and Human Risk Assessment Branch (WH-550D), Health and Ecological Criteria Division, USEPA, Washington, DC, USA, 1991. [19] NAWAZ F, XIE Y B, CAO H B, et al. Catalytic ozonation of 4-nitrophenol over an mesoporous α-MnO2 with resistance to leaching[J]. Catalysis Today, 2015, 258:595-601. [20] MURRAY L S B J W. The surface chemistry of goethite (alpha FeOOH) in major ion seawater[J]. American Journal of Science, 1981, 281(6):788-806. [21] 许琦, 侯亚芹, 郭倩倩, 等. 活性炭表面含氧官能团对燃煤烟气氮氧化物脱除的影响[J]. 环境化学, 2020, 39(8):2105-2111. [22] 白云, 李琴梅, 刘奕忍, 等. 石墨烯材料表面含氧官能团的表征研究[J]. 分析仪器, 2020(4):83-88. [23] SAPUTRA E, PINEM J A, BUDIHARDJO M A, et al. Carbon-supported manganese for heterogeneous activation of peroxymonosulfate for the decomposition of phenol in aqueous solutions[J]. Materials Today Chemistry, 2020, 16:100268. [24] 王兵, 袁增, 李永涛, 等. Mn3O4催化臭氧化处理钻井废水[J]. 环境工程学报, 2015, 9(7):3319-3324. [25] 范举红. 活性炭催化臭氧氧化垃圾渗滤液生物处理出水的研究[D]. 北京:清华大学, 2016. [26] 叶国杰, 王一显, 罗培, 等. 水处理高级氧化法活性物种生成机制及其技术特征分析[J]. 环境工程, 2020, 38(2):1-15. [27] 王群, 杨志超, 徐贺. 无机阴离子对催化臭氧氧化邻苯二甲酸的影响[J]. 环境工程学报, 2017, 11(4):2113-2118. [28] 鲁金凤, 张勇, 王艺, 等. 溴酸盐的形成机制与控制方法研究进展[J]. 水处理技术, 2010, 36(11):5-10. [29] NAWROCKI J, KASPRZYK-HORDERN B. The efficiency and mechanisms of catalytic ozonation[J]. Applied Catalysis B, Environmental, 2010, 99(1/2):27-42. [30] YU G F, WANG Y X, CAO H B, et al. Reactive oxygen species and catalytic active sites in heterogeneous catalytic ozonation for water purification[J]. Environmental Science & Technology, 2020, 54(10):5931-5946. [31] MA J, SUI M H, ZHANG T, et al. Effect of pH on MnO<em>x/GAC catalyzed ozonation for degradation of nitrobenzene[J]. Water Research, 2005, 39(5):779-786. [32] 刘莹, 何宏平, 吴德礼, 等. 非均相催化臭氧氧化反应机制[J]. 化学进展, 2016, 28(7):1112-1120. [33] ZHANG T, LI C J, MA J, et al. Surface hydroxyl groups of synthetic α-FeOOH in promoting OH generation from aqueous ozone:property and activity relationship[J]. Applied Catalysis B:Environmental, 2008, 82(1):131-137. [34] ZHAO L, SUN Z Z, MA J. Novel relationship between hydroxyl radical initiation and surface group of ceramic honeycomb supported metals for the catalytic ozonation of nitrobenzene in aqueous solution[J]. Environmental Science & Technology, 2009, 43(11):4157-4163. [35] SUN Q Q, LI L S, YAN H H, et al. Influence of the surface hydroxyl groups of MnO<em>x/SBA-15 on heterogeneous catalytic ozonation of oxalic acid[J]. Chemical Engineering Journal, 2014, 242(1):348-356. [36] SUI M H, SHENG L, LU K X, et al. FeOOH catalytic ozonation of oxalic acid and the effect of phosphate binding on its catalytic activity[J]. Applied Catalysis B:Environmental, 2010, 96(1):94-100. [37] ESMAILPOUR A A, MORADI S, YUN J, et al. Promoting surface oxygen vacancies on ceria via light pretreatment to enhance catalytic ozonation[J]. Catalysis Science & Technology, 2019, 9(21):5979-5990. [38] AFZAL S, QUAN X, ZHANG J L. High surface area mesoporous nanocast LaMO3 (M=Mn, Fe) perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism[J]. Applied Catalysis B:Environmental, 2017, 206:692-703. [39] 李家耀, 宋卫锋, 李秋华, 等. Mn-Fe-Ce/γ-Al2O3催化剂的制备及其在奶牛养殖废水处理中的臭氧催化氧化性能[J]. 环境工程学报, 2020, 14(4):875-883.
点击查看大图
计量
- 文章访问数: 122
- HTML全文浏览量: 15
- PDF下载量: 3
- 被引次数: 0