ELECTRICITY GENERATION PROPERTIES OF MICROBIAL FUEL CELL WITH CORN COB ACID PYROLYSIS SOLUTION AS THE SUBSTRATE
-
摘要: 考察玉米芯经草酸热裂解预处理后产生的热裂解液在单室空气型阴极微生物燃料电池(microbial fuel cell,MFC)中的降解及产电特性。玉米芯草酸热裂解预处理的最佳条件为:反应温度160℃,反应时间90 min,草酸用量(质量分数)2%时,可产生的还原糖浓度为0.44 g/g,固体消化率约为58%。当采用稀释20倍的酸式热裂解液时,MFC最大功率密度为278 mW/m2,产电周期约为120 h。使用不同浓度玉米芯酸式热裂解液的MFC对COD去除率均可达到90.0%以上,随着稀释倍数的降低,MFC库仑效率从18.6%降低至9.72%。MFC阳极微生物群落在属水平上,典型产电细菌Geobacter属的相对丰度最高达到3.40%;Klebsiella属在使用稀释20倍酸式热裂解液下的相对丰度达到41.6%。研究结果为强化玉米芯在MFC中的有效利用提供了参考。Abstract: The aim of this study is to explore the electricity generation properties in the single-chamber air-cathode microbial fuel cell (MFC) with corn cob acid pyrolysis solution as the substrate. The optimized conditions for the pretreatment of corn cob with oxalic acid pyrolysis were as follows:reaction temperature of 160℃, reaction time of 90 min, oxalic acid dosage of 2% (by mass percentage). Under the optimized condition, the concentration of reducing sugar was 0.44 g/g corn cob and the solid digestibility was about 58%. Fed by the 20 times diluted solution of acid pyrolysis, the MFC could produce the maximum power density of 278 mW/m2. The period of electricity generation in the MFC was about 120 h. The COD removal rate in the MFC fed by different concentrations of corn cob acid pyrolysis solution reached more than 90.0%. With the decrease of the diluted factor, the coulombic efficiency (CE) of MFC decreased from 18.6% to 9.72%. Under different concentrations of corn cob hydrolysate, the highest relative abundance of Geobacter, a typical electrically active bacteria (EAB), was 3.40% in the bacterial community in the anodic biofilm of MFC at the genus level. The relative abundance of Klebsiella reached 41.6% under 20 times diluted corn cob acid pyrolysis solution. The results provided a scientific basis for the effective utilization of corn cob in MFC.
-
Key words:
- corn cob /
- microbial fuel cell /
- acid pyrolysis /
- degradation /
- electricity generation
-
[1] 贾启华,时雅滨,许晓娟,等.改性玉米芯在污水处理中的应用研究进展[J].化工新型材料,2020,48(7):34-37. [2] RANGABHASHIYAM S, BALASUBRAMANIAN P. The potential of lignocellulosic biomass precursors for biochar production:performance, mechanism and wastewater application:a review[J]. Industrial Crops & Products, 2019, 128:405-423. [3] 张立秋,王登敏,李淑更,等.固体碳源生物膜SND处理实际低碳源城市污水[J].工业水处理,2019,39(8):19-22,106. [4] 卢家磊,兰燕月,张饮江,等.基于异构载体的海产品暂养水的协同处理[J].环境工程学报,2020,14(5):1191-1200. [5] PÉREZ J, MUÑOZ-DORADO J, RUBIA D L T, et al. Biodegradation and biological treatments of cellulose, hemicellulose and lignin:an overview[J]. International Microbiology, 2002, 5(2):53-63. [6] LIU W, WANG B, HOU Q X, et al. Effects of fibrillation on the wood fibers' enzymatic hydrolysis enhanced by mechanical refining[J]. Bioresource Technology, 2016, 206:99-103. [7] 鹿钦礼, 李亮, 刘金亮,等. 微生物燃料电池的应用研究进展[J]. 环境工程, 2019, 37(8):95-100. [8] 闫荣, 雷欣, 慕玉洁, 等. 后续碳源强化ANAMMOX-MFC系统脱氮产电调控策略[J]. 环境工程, 2020, 37(8):1-9. [9] XU H, SONG H L, SINGH R P, et al. Simultaneous reduction of antibiotics leakage and methane emission from constructed wetland by integrating microbial fuel cell[J]. Bioresource Technology, 2020, 320(Pt A):124285. [10] SAEED T, JIHAD M M. Organic matter and nutrient removal in tidal flow-based microbial fuel cell constructed wetlands:media and flood-dry period ratio[J]. Chemical Engineering Journal, 2021, 411(prepublish):128507. [11] MAHIDHARA G, GUPTA D, SASIKALA C,et al. Insights into discrepancy in power generation among glucose and malate grown Rubrivivax benzoatilyticus Ja2 microbial fuel cells[J]. Internation Journal of Hydrogen Energy, 2021, 46(4):3090-3104. [12] WANG X, FENG Y J, WANG H M, et al. Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells[J]. Environmental Science & Technology, 2009, 43(15):6088-6093. [13] HASSAN S H A, GAD EL-RAB S M F, RAHIMNEJAD M, et al. Electricity generation from rice straw using a microbial fuel cell[J]. International Journal of Hydrogen Energy, 2014, 39(17):9490-9496. [14] 卞爱琴,远野,张璐璐,等.热碱-分步酶水解-厌氧消化工艺处理秸秆畜粪混合物料及其甲烷高值化条件[J].环境科学,2019,40(2):1003-1010. [15] 杨义,骆仲泱,李国翔,等.纤维素催化热解定向调控制取不含氧烃类液体燃料[J].燃烧科学与技术,2020,26(2):113-119. [16] 程懿斐,王琦.基于组分分析的农业废弃物类生物质热裂解机理研究[J].中国计量大学学报,2019,30(1):44-50. [17] LI X, LU Y B, LUO H P, et al. Microbial stratification structure within cathodic biofilm of the microbial fuel cell using the freezing microtome method[J]. Bioresource Technology, 2017, 241:384-390. [18] XU G F, ZHENG X Y, LU Y B, et al. Development of microbial community within the cathodic biofilm of single-chamber air-cathode microbial fuel cell[J]. Science of the Total Environment, 2019, 665:641-648. [19] LI X, LU Y b, LUO H p, et al. Effect of ph on bacterial distributions within cathodic biofilm of the microbial fuel cell with maltodextrin as the substrate[J]. Chemosphere, 2021, 265:129088. [20] QIN B Y, LUO H P, LIU G L, et al. Nickel ion removal from wastewater using the microbial electrolysis cell[J]. Bioresource Technology, 2012, 121:458-461. [21] LUO H P, YU S X, LIU G L, et al. Effect of in-situ immobilized anode on performance of the microbial fuel cell with high concentration of sodium acetate[J]. Fuel, 2016, 182:732-739. [22] LIU G L, ZHOU Y, LUO H P, et al. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production[J]. Bioresource Technology, 2015, 198:87-93. [23] LAN J, REN Y X, LU Y B, et al. Combined microbial desalination and chemical-production cell with fenton process for treatment of electroplating wastewater nanofiltration concentrate[J]. Chemical Engineering Journal, 2019, 359:1139-1149. [24] CUI W J, LU Y B, ZENG C P, et al. Hydrogen production in single-chamber microbial electrolysis cell under high applied voltages[J]. Science of the Total Environment, 2021, 780:146597. [25] CUSICK R D, BRYAN B, PARKER D S, et al. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater[J]. Applied Microbiology and Biotechnology, 2011, 89(6):2053-2063. [26] LIU G L, YATES M D, CHENG S A, et al. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments[J]. Bioresource Technology, 2011, 102(15):7301-7306. [27] SUN Y, CHENG J J. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production[J]. Bioresource Technology, 2005, 96(14):1599-1606. [28] REDDING A P, WANG Z Y, KESHWANI D R, et al. High temperature dilute acid pretreatment of coastal bermuda grass for enzymatic hydrolysis[J]. Bioresource Technology, 2011, 102(2):1415-1424. [29] ZHOU N, ZHANG Y M, WU X B, et al. Hydrolysis of chlorella biomass for fermentable sugars in the presence of hcl and mgcl 2[J]. Bioresource Technology, 2011, 102(21):10158-10161. [30] ASENSIO Y, FERNANDEZ-MARCHANTE M C, LOBATO J, et al. Influence of the fuel and dosage on the performance of double-compartment microbial fuel cells[J]. Water Research, 2016, 99:16-23. [31] KOÓK L, RÓZSENBERSZKI T, NEMESTÓTHY N, et al. Bioelectrochemical treatment of municipal waste liquor in microbial fuel cells for energy valorization[J]. Journal of Cleaner Production, 2016, 112:4406-4412. [32] SAMSUDEEN N, RADHAKRISHNAN T K, MATHESWARAN M. Performance comparison of triple and dual chamber microbial fuel cell using distillery wastewater as a substrate[J]. Environmental Progress Sustain Energy, 2015, 34(2):589-594. [33] ZHANG L X, ZHOU S G, ZHUANG L, et al. Microbial fuel cell based on Klebsiella pneumoniae biofilm[J]. Electrochemisty Communications, 2008, 10(10):1641-1643.
点击查看大图
计量
- 文章访问数: 143
- HTML全文浏览量: 15
- PDF下载量: 1
- 被引次数: 0