REMOVAL OF 2,4-DINITROTOLUENE BY PERSULFATE ACTIVATED WITH IRON MODIFIED BIOCHAR PREPARED BY DIPPING-PYROLYSIS PROCESS
-
摘要: 为探究并优化浸渍热解法制备铁改性生物炭(MBC)活化过硫酸盐(PS)对有机污染物去除的试验条件及影响因素,以2,4-二硝基甲苯(2,4-DNT)为目标污染物,考察了热解参数(热解温度、升温速率和停留时间)、FeCl3浸渍浓度及初始pH值对2,4-DNT去除的影响,并采用电子自旋共振波谱技术及自由基猝灭试验鉴定了PS/MBC体系中生成的自由基。结果表明:1)热解温度对MBC活化PS去除2,4-DNT的影响最显著,其次为升温速率和停留时间;当热解温度、停留时间和升温速率分别为300℃、3 h和10℃/min时,热解制备的MBC对活化PS去除2,4-DNT的效果最佳;2)FeCl3浸渍浓度是影响MBC活化性能的重要因素,随着FeCl3浸渍浓度的升高,2,4-DNT的去除率先增后减,当FeCl3的浸渍浓度为100 mmol/L时,5 h内2,4-DNT的去除率可达到100%,2,4-DNT去除的准一级动力学常数(kobs)为1.373 min-1;3)当初始pH值为5.0~9.0时,2,4-DNT均具有较好的去除效果,其去除率为94.5%~83.6%,kobs为0.606~0.345 min-1;4)PS/MBC体系中生成的·OH是2,4-DNT去除的主要原因,其强度随MBC的热解温度和FeCl3浸渍浓度的不同差异较大。研究结果表明,浸渍热解法制备的MBC可有效活化PS实现污染物的高效去除,为PS化学氧化处理有机污染水体提供了新思路。Abstract: To explore and optimize the experimental conditions and influence factors of the removal of organic pollutants by persulfate activated with iron modified biochar prepared by the dipping-pyrolysis process, 2,4-dinitrotoluene (2,4-DNT) was selected as the target pollutant to investigate the effects of pyrolysis parameters (pyrolysis temperature, heating rate, and residence time), FeCl3 concentration and initial pH values on 2,4-DNT removal. The electron spin resonance and free radical quenching test were used to assess the intensity of SO4-· and ·OH in the PS/MBC system. The results showed that:1) The pyrolysis temperature had the most significant influence on removal of 2,4-DNT by PS activated with MBC, followed by heating rate and residence time. When the pyrolysis parameters were retained at 300℃, 3 h, and 10℃/min, the best removal of 2,4-DNT was obtained by PS/MBC oxidation. 2) The concentration of FeCl3 was an important factor of MBC activation. The removal of 2,4-DNT first increased and then decreased with the increase of the FeCl3 concentration. When the concentration of FeCl3 was retained at 100 mmol/L, the removal efficiency of 2,4-DNT reached 100% after the reaction of 5 h, and the pseudo-first-order kinetic constant (kobs) of 2,4-DNT removal was determined to be 1.373 min-1. 3)When the initial pH ranged from 5.0 to 9.0, 2,4-DNT had a good removal by PS/MBC oxidation, the removal efficiencies were 94.5%~83.6%, and the kobs values were 0.606~0.345 min-1. 4) ·OH was the main factor for the removal of 2,4-DNT by PS/MBC oxidation. The signals of ·OH with different strengths were observed, with the addition of MBC prepared by different pyrolysis temperatures and FeCl3 concentrations. The results showed that MBC prepared by dipping-pyrolysis could effectively activate PS to achieve the removal of organic pollutants, which provided a new idea for treatment of organically polluted water by PS based-advanced chemical oxidation.
-
Key words:
- persulfate /
- iron modified biochar /
- dipping-pyrolysis /
- 2,4-dinitrotoluene
-
[1] 王璇. 硝基苯类有机污染物在环境中的来源与归趋行为研究[J]. 科技视界,2013(26):513. [2] KEITH L H, TELLIARD W A. Priority pollutants I-a perapective view[J]. ES&T Special Report, 1979,13(4):416-423. [3] LI X D, WU B, ZHANG Q, et al. Mechanisms on the impacts of humic acids on persulfate/Fe2+-based groundwater remediation[J]. Chemical Engineering Journal, 2019,378:122142. [4] 张琦,王静贤,于鸽方,等. 不同方式活化过硫酸盐处理含油污泥及机理探究[J]. 现代化工,2020,40(10):120-130. [5] FANG J Y, SHANG C. Bromate formation from bromide oxidation by the UV/persulfate process[J]. Environmental Science & Technology, 2012,46(16):8976-8983. [6] ANIOSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004,13(38):3705-3712. [7] WANG J L, WANG S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018,334(15):1502-1517. [8] HUANG K C, COUTTENEY R A, HOAG G E. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE)[J]. Chemosphere, 2002,49(4):413-420. [9] ZHANG Y X, LIU H L, XIN Y J, et al. Erythromycin degradation and ERY-resistant gene inactivation in erythromycin mycelial dreg by heat-activated persulfate oxidation[J]. Chemical Engineering Journal, 2019,358(15):1446-1453. [10] THINES K R, ABDULLAH E C, MUBARAK N M, et al. Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application:a review[J]. Renewable and Sustainable Energy Reviews, 2017,67:257-276. [11] FANG G D, LIU C, GAO J, et al. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation[J]. Environmental Science & Technology, 2015,49(9):5645-5653. [12] YUAN Y, NAUTHI B, ANTONIN P, et al. Applications of biochar in redox-mediated reactions[J]. Bioresource Technology, 2017, 246:271-281. [13] ZHU S S, HUANG X C, MA F, et al. Catalytic removal of aqueous contaminants on N-doped graphitic biochars:inherent roles of adsorption and nonradical mechanisms[J]. Environmental Science & Technology, 2018,52(15):8649-8658. [14] KEMMOU L, FRONTISTIS Z, VAKROS J, et al. Degradation of antibiotic sulfamethoxazole by biochar-activated persulfate:factors affecting the activation and degradation processes[J]. Catalysis Today, 2018,313(1):128-133. [15] 许端平,姜紫微,张朕. 磁性生物炭对铅和镉离子的竞争吸附动力学[J]. 安徽农业科学,2020,22(48):67-72. [16] WANG S Y, TANG Y K, LI K, et al. Combined performance of biochar sorption and magnetic separation processes for treatment of chromium-contained electroplating wastewater[J]. Bioresource Technology, 2014,174:67-73. [17] LIU W J, TIAN K, JIANG H, et al. Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste[J]. Scientific Reports, 2013,3(1):2419. [18] ZHU X D, LIU Y C, QIAN F, et al. Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal[J]. Bioresource Technology, 2014,154:209-214. [19] YI Y Q, TU G Q, TSANG P E, et al. Insight into the influence of pyrolysis temperature on Fenton-like catalytic performance of magnetic biochar[J]. Chemical Engineering Journal, 2020, 380(15):122518. [20] 梁宇飞,薛振华. 沙柳的低温热解特性研究[J]. 木材加工机械,2014,25(4):48-58. [21] RONG X, XIE M, KONG L S, et al. The magnetic biochar derived from banana peels as a persulfate activator for organic contaminants degradation[J]. Chemical Engineering Journal, 2019,372(15):294-303. [22] LI Q Q, HUANG X C, SUN G J, et al. The regular/persistent free radicals and associated reaction mechanism for the degradation of 1,2,4-trichlorobenzene over different MnO2 polymorphs[J]. Environmental Science & Technology, 2018,52(22):13351-13360. [23] 郑凯琪,王俊超,刘姝彤,等. 不同热解温度污泥生物炭对Pb2+、Cd2+的吸附特性[J]. 环境工程学报,2016,10(12):7277-7282. [24] SUN X M, LI Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angewandte Chemie, 2004,116(5):607-611. [25] ZHANG K K, SUN P, MARIE C A S F, et al. Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation[J]. Carbon, 2018,130:730-740. [26] JIA C J, SUN D L, LUO F, et al. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings[J]. Journal of American Chemical Society, 2008,130(50):16968-16977. [27] 郭明帅,王菲,张学良,等. 改性生物炭活化过硫酸盐对水中苯和氯苯的去除机制[J]. 中国环境科学,2020,12(40):5280-5289. [28] YANG J P, ZHAO Y C, MA S M, et al. Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust[J]. Environmental Science & Technology, 2016,50(21):12040-12047. [29] BU L J, SHI Z, ZHOU S Q. Modeling of Fe(Ⅱ)-activated persulfate oxidation using atrazine as a target contaminant[J]. Separation and Purification Technology, 2016,169(1):59-65. [30] KUSIC H, PETERNEL I, UKIC S, et al. Modeling of iron activated persulfate oxidation treating reactive azo dye in water matrix[J]. Chemical Engineering Journal, 2011,172(1):109-121. [31] SONG Q, FENG Y P, LIU G G, et al. Degradation of the flame retardant triphenyl phosphate by ferrous ionactivated hydrogen peroxide and persulfate:kinetics, pathways, and mechanisms[J]. Chemical Engineering Journal, 2019,361:929-936. [32] SHANG W T, DONG Z J, LI M, et al. Degradation of diatrizoate in water by Fe (Ⅱ)-activated persulfate oxidation[J]. Chemical Engineering Journal, 2019,361(1):1333-1334. [33] LAU T K, CHU W, GRAHAM N J D. The aqueous degradation of butylated hydroxyanisole by UV/S2O82-:study of reaction mechanisms via dimerization and mineralization[J]. Environmental Science & Technology, 2007,41(2):613-619. [34] FANG G D, CHEN X R, WU W H, et al. Mechanisms of interaction between persulfate and soil constituents:activation, free radical formation, conversion, and identification[J]. Environmental Science & Technology, 2018,52(24):14352-14361. [35] FANG G D, DIONYSIOU D D, ZHOU D M, et al. Transformation of polychlorinated biphenyls by persulfate at ambient temperature[J]. Chemosphere, 2013,90(5):1573-1580. [36] LIANG C J, LIN Y T, SHIH W H. Treatment of trichloroethylene by adsorption and persulfate oxidation in batch studies[J]. Industrial & Engineering Chemistry Research, 2009,48(18):8373-8380. [37] OUYANG D, YAN J C, QIAN L B, et al. Degradation of 1,4-dioxane by biochar supported nano magnetite particles activating persulfate[J]. Chemosphere, 2017,184:609-617. [38] YANG L, CHEN Y, OUYANG D, et al. Mechanistic insights into adsorptive and oxidative removal of monochlorobenzene in biochar-supported nanoscale zero-valent iron/persulfate system[J]. Chemical Engineering Journal, 2020,400(15):125811. [39] NGUYEN T B, DOONG R, HUANG C P, et al. Activation of persulfate by CoO nanoparticles loaded on 3D mesoporous carbon nitride (CoO@meso-CN) for the degradation of methylene blue (MB)[J]. Science of the Total Environment, 2019,675(20):531-541. 期刊类型引用(56)
1. 叶兴联. 脱硫废水旋转雾化蒸发塔的流场特性模拟研究. 力学与实践. 2024(02): 371-381 . 百度学术
2. 丛玮,杨春振,崔晓波. 烟气喷雾干燥处理脱硫废水对锅炉煤耗影响分析. 当代化工研究. 2024(14): 40-42 . 百度学术
3. 舒国铭. 燃煤电厂脱硫废水零排放处理工艺的应用研究进展. 石化技术. 2024(10): 257-259+268 . 百度学术
4. 钟天东. 药剂软化预处理脱硫废水的试验研究. 东北电力技术. 2023(02): 57-62 . 百度学术
5. 王锐,李永立,张洪江,宫延哲,胡彬,陈希. 石灰软化法中海藻酸钠强化去除脱硫废水中的SO_4~(2-). 环境工程. 2023(03): 26-33 . 本站查看
6. 张泉,高然,阳芳,赵剑锋,徐文军,吴来贵. 电厂湿法脱硫废水高倍浓缩中试研究. 水处理技术. 2023(06): 128-132 . 百度学术
7. 薛念杰,汤红妍,刘梦瑶. 脱硫废水资源化利用研究进展. 广州化工. 2023(08): 26-28+41 . 百度学术
8. 马丙军,刘全军,张野虎,魏星. 高低温耦合脱硫废水零排放技术研究及应用. 电力科技与环保. 2023(04): 331-337 . 百度学术
9. 陈嘉玮,陈海杰,李飞,詹凌霄,陈沾兴,杨林军. 脱硫废水液滴旋转喷雾蒸发的数值模拟. 中南大学学报(自然科学版). 2023(09): 3421-3431 . 百度学术
10. 夏辉,孙斌,刘平,刘伟雄,陆梦楠,赵焰. 燃煤电厂脱硫废水膜分离处理技术进展及展望. 山东化工. 2022(02): 45-49 . 百度学术
11. 倪亭亭,王云钟,吴永明,胡玲玲,杨春燕,邓觅. 湿法烟气脱硫废水处理工程实例. 中国给水排水. 2022(04): 109-113 . 百度学术
12. 杨健,孙东奇,李飞,王坤,赵晓云,赵晓丹,周振. pH值对脱硫废水处理系统污泥性质的影响. 上海电力大学学报. 2022(03): 215-220+244 . 百度学术
13. 李永通,庄媛,马大卫,石宝友,郝昊天,陈剑,杨娴. 海藻酸钠基多孔碳气凝胶的制备及其对水中四环素去除. 环境保护科学. 2022(04): 52-58 . 百度学术
14. 冯前源,陈海杰,李飞,詹凌霄,陈恒,顾丽燕,杨林军. 脱硫废水旋转喷雾蒸发特性数值模拟. 中南大学学报(自然科学版). 2022(11): 4543-4551 . 百度学术
15. 林晓锋,钟天东,童鑫红,陈光宇,张净瑞,郑煜铭. 脱硫废水对渣水系统的腐蚀影响. 环境工程学报. 2021(01): 350-359 . 百度学术
16. 林福全. 燃煤电厂脱硫废水无软化高效蒸发浓缩工艺研究. 电力科技与环保. 2021(01): 42-46 . 百度学术
17. 何鹏飞,蒋宝庆,梁笠,屈荷叶,刘少峰. 水泥行业脱硫废水篦冷机烟道蒸发技术. 水泥. 2021(01): 61-62 . 百度学术
18. 赵飞,石中喜,张净瑞,黄奕军,万忠诚,郑煜铭. 适应水质波动性的燃煤电厂脱硫废水软化工艺研究. 工业水处理. 2021(04): 97-101 . 百度学术
19. 郭士义. 正渗透处理电厂脱硫废水中试研究. 电站辅机. 2021(02): 31-33+39 . 百度学术
20. 王硕,高良敏,李光雷,向朝虎,边成利. 电絮凝耦合多级吸附法脱硫废水除氟效果研究. 绿色科技. 2021(12): 91-93 . 百度学术
21. 许勇毅,杨定畅,王峰,刘畅,马岚,邢浩若,崔凌霄,马双忱. 电吸附技术在电力行业废水处理中的应用. 洁净煤技术. 2021(03): 138-146 . 百度学术
22. 吴建勋. 火电厂高盐废水深度浓缩工艺路线技术经济比较分析. 清洗世界. 2021(09): 12-15 . 百度学术
23. 包姗,马英,陈婷. 热电厂脱硫废水近零排放改造技术. 给水排水. 2021(11): 88-91 . 百度学术
24. 金军,沈利,王志刚,施鹏飞. 燃煤电厂湿法脱硫废水悬浮物和Cl~-浓度控制优化. 能源工程. 2021(06): 58-63 . 百度学术
25. 张爱民,赵飞,郑铭灏. 高温旁路烟道蒸发技术在脱硫废水零排处理中的技术对比与应用现状. 环境科学导刊. 2021(06): 67-72 . 百度学术
26. 夏赛,卫新来,金杰,陈俊. 燃煤电厂脱硫废水处理技术研究进展. 现代化工. 2020(01): 46-49 . 百度学术
27. 武传涛,韩严和,符一鸣. 内循环微电解对天然气中H_2S的处理及其工艺的优化. 环境工程学报. 2020(03): 721-729 . 百度学术
28. 何文丽,何灿,赵永志,赵金,聂宜文,田丽森. 燃煤电厂脱硫废水零排放技术及工程应用. 给水排水. 2020(04): 114-118 . 百度学术
29. 邓辉,李清,唐巍,李筱璋. 一种新型增压风机与传统增压风机经济性比较. 电力科技与环保. 2020(03): 48-52 . 百度学术
30. 赵国钦. 燃煤电厂废水零排放技术路线适应性分析及研究. 环保科技. 2020(03): 16-21+26 . 百度学术
31. 张建华,池毓菲,邹宜金,王炳煌,张净瑞,郑煜铭. 燃煤电厂脱硫废水处理技术工程应用现状与展望. 工业水处理. 2020(10): 14-19 . 百度学术
32. 李飞,陈海杰,孙宗康,谷小兵,白玉勇,高飞,杨林军. 热风分布器结构对脱硫废水旋转喷雾蒸发特性影响的数值模拟. 化工进展. 2020(S2): 385-392 . 百度学术
33. 车广民,李飞,陈海杰,刘峰均,陈武,杨林军. 脱硫废水旋转喷雾蒸发特性及氯元素迁移转化试验. 高校化学工程学报. 2020(05): 1313-1320 . 百度学术
34. 戚绪亮,庞欣,安风霞,孙培军,章晓芳. 以镁盐为副产品的脱硫废水零排放技术. 能源科技. 2020(12): 88-92 . 百度学术
35. 郑利兵,魏源送,焦赟仪,王钢,岳增刚. 零排放形势下热电厂脱硫废水处理进展及展望. 化学工业与工程. 2019(01): 24-37 . 百度学术
36. 杜家芝,曹顺安. 湿法烟气脱硫技术的现状与进展. 应用化工. 2019(06): 1495-1500 . 百度学术
37. 张全斌,周琼芳,梁婕. 燃煤电厂脱硫废水零排放技术综述与应用研究. 环境科学导刊. 2019(04): 59-64 . 百度学术
38. 鲍丽洲,朱浩. 燃煤电厂湿法烟气脱硫废水处理技术研究. 科技风. 2019(24): 156 . 百度学术
39. 叶春松,操容,梁巍,朱文瑜,郑伟. 脱硫废水高温烟气蒸发过程中氯盐和铵盐的分解. 发电技术. 2019(04): 362-366 . 百度学术
40. 霍立敬,张玉玲,魏晗笑,尹连庆. 二氧化氯预氧化强化混凝处理脱硫废水试验研究. 工业用水与废水. 2019(04): 12-15 . 百度学术
41. 王兴俊,周永春,安德欣,吴伟,刘亚争,林宸雨,马双忱. 高镁脱硫废水软化和镁回收实验与机理分析. 化工进展. 2019(11): 252-258 . 百度学术
42. 王兴俊,周永春,安德欣,吴伟,刘亚争,林宸雨,马双忱. 高镁脱硫废水软化和镁回收实验与机理分析. 化工进展. 2019(S1): 252-258 . 百度学术
43. 赵之理,张焕亨,罗翠红,曾武,熊启明,黄燕冰,王甲. 垃圾焚烧电厂洗烟废水处理技术进展. 广东化工. 2019(23): 76-77+90 . 百度学术
44. 王蔚. 基于脱硫箱罐结构特点探讨及应对策略分析. 科技风. 2019(36): 159-160 . 百度学术
45. 马双忱,别璇,孙尧,陈奎续,朱召平. 燃煤电厂镁法脱除烟气中SO_2的研究现状与展望. 化工进展. 2018(09): 3609-3617 . 百度学术
46. 韩庭苇,王郑,王子杰,许锴,李子木,尹闻,刘媛媛,刘康乐,彭思伟. 燃煤电厂脱硫废水处理技术研究进展. 煤炭与化工. 2018(06): 156-160 . 百度学术
47. 代学民,卢颖,南国英,崔笑颖,任淑萍. 湿法烟气脱硫废水主要处理技术的问题及建议. 绿色科技. 2018(10): 60-62 . 百度学术
48. 胡玉琳,高良敏,包文运,王铁民,李光雷,向朝虎,吴晔. 火力发电厂脱硫废水处理工艺研究进展. 山东工业技术. 2018(17): 203-204 . 百度学术
49. 翁卫国,孙建国,李钦武,周灿,蒋善行. 脱硫废水零排放系统关键参数数值模拟研究. 中国电力. 2018(06): 42-47 . 百度学术
50. 王雅丽. 石灰石-石膏湿法烟气脱硫废水处理工艺进展. 中国战略新兴产业. 2018(28): 4-5 . 百度学术
51. 肖勇强,高亚萍,杨洋,吴松恒. 新型含镁渣环保脱硫剂的制备及其性能测试. 环境工程. 2018(11): 133-136 . 本站查看
52. 薛少凡. 火电机组脱硫废水零排放概述. 决策探索(中). 2018(11): 64-65 . 百度学术
53. 张弦,叶春松,贾旭翔,刘通,黄建伟. 基于DLVO理论计算球形氢氧化镁胶体的Hamaker常数. 热力发电. 2018(12): 47-52 . 百度学术
54. 袁浩爽,师诚承,张琳,范学成,许伟刚,柳林,常帅,谢保江,张竞丹,慈斌斌. 机械蒸汽再压缩降膜蒸发器的沸腾传热特性. 化学工程. 2018(11): 16-20 . 百度学术
55. 史平. 燃煤电厂脱硫废水的零排放处理技术. 山西化工. 2018(06): 183-185 . 百度学术
56. 赵保安. 燃煤电厂湿法烟气脱硫废水处理技术研究. 宁波化工. 2018(03): 32-35 . 百度学术
其他类型引用(16)
-

计量
- 文章访问数: 314
- HTML全文浏览量: 57
- PDF下载量: 8
- 被引次数: 72