CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微絮凝砂滤-臭氧催化氧化强化石化生化出水COD去除

付丽亚 李敏 周鉴 吴昌永 朱晨 于茵 宋玉栋

付丽亚, 李敏, 周鉴, 吴昌永, 朱晨, 于茵, 宋玉栋. 微絮凝砂滤-臭氧催化氧化强化石化生化出水COD去除[J]. 环境工程, 2021, 39(11): 159-165. doi: 10.13205/j.hjgc.202111021
引用本文: 付丽亚, 李敏, 周鉴, 吴昌永, 朱晨, 于茵, 宋玉栋. 微絮凝砂滤-臭氧催化氧化强化石化生化出水COD去除[J]. 环境工程, 2021, 39(11): 159-165. doi: 10.13205/j.hjgc.202111021
FU Li-ya, LI Min, ZHOU Jian, WU Chang-yong, ZHU Chen, YU Yin, SONG Yu-dong. MICRO FLOCCULATING SAND FILTER-CATALYTIC OZONATION ENHANCED COD REMOVAL FROM BIO-TREATED PETROCHEMICAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 159-165. doi: 10.13205/j.hjgc.202111021
Citation: FU Li-ya, LI Min, ZHOU Jian, WU Chang-yong, ZHU Chen, YU Yin, SONG Yu-dong. MICRO FLOCCULATING SAND FILTER-CATALYTIC OZONATION ENHANCED COD REMOVAL FROM BIO-TREATED PETROCHEMICAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 159-165. doi: 10.13205/j.hjgc.202111021

微絮凝砂滤-臭氧催化氧化强化石化生化出水COD去除

doi: 10.13205/j.hjgc.202111021
基金项目: 

中央级公益性科研院所基本科研业务专项(2020YSKY-005);国家水体污染控制与治理科技重大专项(2017ZX07402-002)。

详细信息
    作者简介:

    付丽亚(1986-),女,助理研究员,博士,主要研究方向为水污染控制技术。liyafu1115@163.com

    通讯作者:

    宋玉栋(1982-),男,研究员,博士,主要研究方向为水污染控制技术。songyudong@263.net

MICRO FLOCCULATING SAND FILTER-CATALYTIC OZONATION ENHANCED COD REMOVAL FROM BIO-TREATED PETROCHEMICAL WASTEWATER

  • 摘要: 为强化石化生化出水COD的去除,采用微絮凝砂滤-臭氧催化氧化工艺处理石化生化出水,比较了臭氧催化氧化反应器不同氧化方式和不同回流比组合方式下COD的去除,开展了臭氧催化氧化深度处理单元小试、中试和生产性规模研究,确立了以双级臭氧催化氧化Ⅰ级自回流工艺(回流比100%)为双级臭氧催化氧化推荐的优化工艺。生化出水ρ(COD)为70~120 mg/L时,微絮凝砂滤出水ρ(COD)达到65~113 mg/L,Ⅱ级氧化出水COD平均去除率达到35.0%~42.6%,出水满足GB 31571-2015《石油化学工业污染物排放标准》排放限值要求。生产性试验条件下,优化工艺装置去除单位COD消耗臭氧量平均为1.04 g/g,比对照组现阶段生产工艺(仅Ⅰ级臭氧曝气)降低了21.2%。
  • [1] 生态环境部. 环境统计年鉴[M]. 北京:中国环境年鉴社,2018.
    [2] WU C Y, ZHOU Y X, SUN Q L, et al. Appling hydrolysis acidification-anoxic-oxic process in the treatment of petrochemical wastewater:from bench scale reactor to full scale wastewater treatment plant[J]. Journal of Hazardous Materials, 2016, 309:185-191.
    [3] ZHANG S Y, WU C Y, ZHOU Y X, et al. Effect of wastewater particles on catalytic ozonation in the advanced treatment of petrochemical secondary effluent[J]. Chemical Engineering Journal,2018, 345:280-289.
    [4] WU C Y, LI Y N, ZHOU Y X, et al. Upgrading the Chinese biggest petrochemical wastewater treatment plant:technologies research and full scale application[J]. Science of the Total Environment, 2018, 633:89-197.
    [5] FU L Y, WU C Y, ZHOU Y X, et al. Ozonation reactivity characteristics of dissolved organic matter in secondary petrochemical wastewater by single ozone, ozone/H2O2, and ozone/catalyst[J]. Chemosphere,2019,233:34-43.
    [6] WU C Y, ZHOU Y X, ZHANG S Y, et al. The effect of toxic carbon source on the reaction of activated sludge in the batch reactor[J]. Chemosphere,2018,194:784-792.
    [7] 谭煜, 付丽亚, 周鉴, 等. 胞外聚合物(EPS)对污水处理影响的研究进展[J]. 环境工程技术学报,2021,11(2):307-313.
    [8] 王树涛,王虹,马军,等. 我国北方城市污水处理厂二级处理出水的水质特性[J]. 环境科学,2009,30(4):1099-1104.
    [9] ROSENBERGER S, KRAUME M. Filterability of activated sludge in membrane bioreactor[J]. Desalination, 2002,146(1/2/3):373-379.
    [10] LEAD J R, WILKINSON K J. Aquatic colloids and nanoparticles:current knowledge and future trends[J]. Environmental Chemistry, 2006,3(3):159-171.
    [11] WAELES M, TANGUY V, LESPES G, et al. Behaviour of colloidal trace metals (Cu, Pb and Cd) in estuarine waters:an approach using frontal ultrafiltration (UF) and stripping chronopotentiometric methods (SCP)[J]. Estuarine Coastal and Shelf Science, 2008,80:538-544.
    [12] YAN C X, NIE M H, YANG Y, et al. Effect of colloids on the occurrence, distribution and photolysis of emerging organic contaminants in wastewaters[J]. Journal of Hazard Materials, 2015,299:241-248.
    [13] YAN C X, YANG Y, ZHOU J L, et al. Selected emerging organic contaminants in the Yangtze Estuary, China:a comprehensive treatment of their association with aquatic colloids[J]. Journal of Hazard Materials, 2015,283:14-23.
    [14] LU Y X, GAO X L, SONG J M, et al. Colloidal toxic trace metals in urban riverine and estuarine waters of Yantai City, southern coast of North Yellow Sea[J]. Science of the Total Environment, 2020, 717:135265.
    [15] ZUCKER I, LESTER Y, AVISAR D, et al. Influence of wastewater particles on ozone degradation of trace organic contaminants[J]. Environmental Science & Technology. 2015,49:301-308.
    [16] METCALF EDDY I, MOHAMMAD A O, TCHOBANOGLOUS G. Wastewater engineering:treatment and reuse[M]. 5th Ed.New York:McGraw Hill Education Press, 2013.
    [17] BAR-ZEEV E, BELKIN N, LIBERMAN B, et al. Rapid sand filtration pretreatment for SWRO:microbial maturation dynamics and filtration efficiency of organic matter[J]. Desalination, 2012,286:120-130.
    [18] ALTMANN J, RUHI A S, SAUTER D, et al. Integrating organic micropollutant removal into tertiary filtration:combining PAC adsorption with advanced phosphorus removal[J]. Water Research, 2015,84:58-65.
    [19] 王雅宁,吴昌永,周岳溪,等. PAC和PAFC对内循环连续砂滤器处理石化二级出水的影响研究[J]. 中国环境科学,2016,36(12):3625-3630.
    [20] 丁岩,吴昌永,周岳溪,等. 活性炭吸附石化二级出水有机物去除特性研究[J]. 环境科学学报,2016,36(4):1183-1189.
    [21] ZHENG X, KHAN M T, CROUE J P. Contribution of effluent organic matter (EFOM) to ultrafiltration (UF) membrane fouling:isolation, characterization, and fouling effect of EFOM fractions[J]. Water Research, 2014,65:414-424.
    [22] 李欣欣,解立平,王蒙,等. 回流固定床臭氧催化氧化煤化工反渗透浓水[J]. 化工进展,2020,39(2):760-766.
    [23] 任安东,郑义,孙天姿,等. 回流时间对厨余垃圾厌氧发酵的影响[J/OL].环境工程. https://kns.cnki.net/kcms/detail/11.2097.X.20210728.1515.002.html.
    [24] 李长刚,阎光绪,郭绍辉.内循环回流比和碳源投加量对两段进水A/O工艺去除重油加工污水氮污染物的影响[J]. 石油科学通报,2018,3(4):475-482.
    [25] SUN X M, WU C Y, ZHOU Y X, et al. Using DOM fraction method to investigate the mechanism of catalytic ozonation for real wastewater[J]. Chemical Engineering Journal,2019,369:100-108.
    [26] 曹臣,韦朝海,杨清玉,等. 废水处理生物出水中COD构成的解析:以焦化废水为例[J]. 环境化学,2012(10):1494-1501.
  • 加载中
计量
  • 文章访问数:  123
  • HTML全文浏览量:  8
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 网络出版日期:  2022-01-26

目录

    /

    返回文章
    返回