MICRO FLOCCULATING SAND FILTER-CATALYTIC OZONATION ENHANCED COD REMOVAL FROM BIO-TREATED PETROCHEMICAL WASTEWATER
-
摘要: 为强化石化生化出水COD的去除,采用微絮凝砂滤-臭氧催化氧化工艺处理石化生化出水,比较了臭氧催化氧化反应器不同氧化方式和不同回流比组合方式下COD的去除,开展了臭氧催化氧化深度处理单元小试、中试和生产性规模研究,确立了以双级臭氧催化氧化Ⅰ级自回流工艺(回流比100%)为双级臭氧催化氧化推荐的优化工艺。生化出水ρ(COD)为70~120 mg/L时,微絮凝砂滤出水ρ(COD)达到65~113 mg/L,Ⅱ级氧化出水COD平均去除率达到35.0%~42.6%,出水满足GB 31571-2015《石油化学工业污染物排放标准》排放限值要求。生产性试验条件下,优化工艺装置去除单位COD消耗臭氧量平均为1.04 g/g,比对照组现阶段生产工艺(仅Ⅰ级臭氧曝气)降低了21.2%。Abstract: In order to enhance the COD removal of petrochemical biochemical effluent, the removal effect of micro flocculation sand filtration and ozone catalytic oxidation on COD in petrochemical biochemical effluent was analyzed. The COD removal under different combination modes of ozone catalytic oxidation tower was compared. The lab-scale, pilot-scale and productive scale of catalytic ozonation were carried out. The ozonation tower with two stages, one-stage aeration and one-stage reflux (reflux ratio 100%) were recommended for its good performance. When the bio-treated petrochemical wastewater was 70~120 mg/L, micro flocculating sand filter effluent was 65~113 mg/L, the remocal rate of COD in two-stage effluent reached 35.0%~42.6%, meeting the emission standard for petroleum chemical industry(GB 31571-2015). Compared with the one stage aeration process production test device, ozone consumption for per unit COD of the selected optimized technology was 1.04 g/g and reduced by 21.2% comparing with the original process (single stage ozonation).
-
Key words:
- micro flocculating sand filter /
- catalysis ozonation /
- petrochemical wastewater /
- pretreatment /
- reflux
-
[1] 生态环境部. 环境统计年鉴[M]. 北京:中国环境年鉴社,2018. [2] WU C Y, ZHOU Y X, SUN Q L, et al. Appling hydrolysis acidification-anoxic-oxic process in the treatment of petrochemical wastewater:from bench scale reactor to full scale wastewater treatment plant[J]. Journal of Hazardous Materials, 2016, 309:185-191. [3] ZHANG S Y, WU C Y, ZHOU Y X, et al. Effect of wastewater particles on catalytic ozonation in the advanced treatment of petrochemical secondary effluent[J]. Chemical Engineering Journal,2018, 345:280-289. [4] WU C Y, LI Y N, ZHOU Y X, et al. Upgrading the Chinese biggest petrochemical wastewater treatment plant:technologies research and full scale application[J]. Science of the Total Environment, 2018, 633:89-197. [5] FU L Y, WU C Y, ZHOU Y X, et al. Ozonation reactivity characteristics of dissolved organic matter in secondary petrochemical wastewater by single ozone, ozone/H2O2, and ozone/catalyst[J]. Chemosphere,2019,233:34-43. [6] WU C Y, ZHOU Y X, ZHANG S Y, et al. The effect of toxic carbon source on the reaction of activated sludge in the batch reactor[J]. Chemosphere,2018,194:784-792. [7] 谭煜, 付丽亚, 周鉴, 等. 胞外聚合物(EPS)对污水处理影响的研究进展[J]. 环境工程技术学报,2021,11(2):307-313. [8] 王树涛,王虹,马军,等. 我国北方城市污水处理厂二级处理出水的水质特性[J]. 环境科学,2009,30(4):1099-1104. [9] ROSENBERGER S, KRAUME M. Filterability of activated sludge in membrane bioreactor[J]. Desalination, 2002,146(1/2/3):373-379. [10] LEAD J R, WILKINSON K J. Aquatic colloids and nanoparticles:current knowledge and future trends[J]. Environmental Chemistry, 2006,3(3):159-171. [11] WAELES M, TANGUY V, LESPES G, et al. Behaviour of colloidal trace metals (Cu, Pb and Cd) in estuarine waters:an approach using frontal ultrafiltration (UF) and stripping chronopotentiometric methods (SCP)[J]. Estuarine Coastal and Shelf Science, 2008,80:538-544. [12] YAN C X, NIE M H, YANG Y, et al. Effect of colloids on the occurrence, distribution and photolysis of emerging organic contaminants in wastewaters[J]. Journal of Hazard Materials, 2015,299:241-248. [13] YAN C X, YANG Y, ZHOU J L, et al. Selected emerging organic contaminants in the Yangtze Estuary, China:a comprehensive treatment of their association with aquatic colloids[J]. Journal of Hazard Materials, 2015,283:14-23. [14] LU Y X, GAO X L, SONG J M, et al. Colloidal toxic trace metals in urban riverine and estuarine waters of Yantai City, southern coast of North Yellow Sea[J]. Science of the Total Environment, 2020, 717:135265. [15] ZUCKER I, LESTER Y, AVISAR D, et al. Influence of wastewater particles on ozone degradation of trace organic contaminants[J]. Environmental Science & Technology. 2015,49:301-308. [16] METCALF EDDY I, MOHAMMAD A O, TCHOBANOGLOUS G. Wastewater engineering:treatment and reuse[M]. 5th Ed.New York:McGraw Hill Education Press, 2013. [17] BAR-ZEEV E, BELKIN N, LIBERMAN B, et al. Rapid sand filtration pretreatment for SWRO:microbial maturation dynamics and filtration efficiency of organic matter[J]. Desalination, 2012,286:120-130. [18] ALTMANN J, RUHI A S, SAUTER D, et al. Integrating organic micropollutant removal into tertiary filtration:combining PAC adsorption with advanced phosphorus removal[J]. Water Research, 2015,84:58-65. [19] 王雅宁,吴昌永,周岳溪,等. PAC和PAFC对内循环连续砂滤器处理石化二级出水的影响研究[J]. 中国环境科学,2016,36(12):3625-3630. [20] 丁岩,吴昌永,周岳溪,等. 活性炭吸附石化二级出水有机物去除特性研究[J]. 环境科学学报,2016,36(4):1183-1189. [21] ZHENG X, KHAN M T, CROUE J P. Contribution of effluent organic matter (EFOM) to ultrafiltration (UF) membrane fouling:isolation, characterization, and fouling effect of EFOM fractions[J]. Water Research, 2014,65:414-424. [22] 李欣欣,解立平,王蒙,等. 回流固定床臭氧催化氧化煤化工反渗透浓水[J]. 化工进展,2020,39(2):760-766. [23] 任安东,郑义,孙天姿,等. 回流时间对厨余垃圾厌氧发酵的影响[J/OL].环境工程. https://kns.cnki.net/kcms/detail/11.2097.X.20210728.1515.002.html. [24] 李长刚,阎光绪,郭绍辉.内循环回流比和碳源投加量对两段进水A/O工艺去除重油加工污水氮污染物的影响[J]. 石油科学通报,2018,3(4):475-482. [25] SUN X M, WU C Y, ZHOU Y X, et al. Using DOM fraction method to investigate the mechanism of catalytic ozonation for real wastewater[J]. Chemical Engineering Journal,2019,369:100-108. [26] 曹臣,韦朝海,杨清玉,等. 废水处理生物出水中COD构成的解析:以焦化废水为例[J]. 环境化学,2012(10):1494-1501.
点击查看大图
计量
- 文章访问数: 123
- HTML全文浏览量: 8
- PDF下载量: 13
- 被引次数: 0