OPTIMIZATION OF GROUNDWATER PUMPING SCHEME FOR A CHLORINATED HYDROCARBON-CONTAMINATED SITE
-
摘要: 以某氯代烃污染场地地下水抽出方案为研究对象,利用数值模拟结合遗传算法展开优化研究,抽出处理的修复目标为在抽出360 d后地下水中ρ(CCl4)<1500 μg/L,优化的目标函数为总抽出量最小。模拟优化结果显示:采用恒定抽出模式时初始备选井位于污染羽中轴线的方案优于均匀式的布井方案;将360 d分为2个阶段优化后的总抽出量相比于恒定抽出时减少了8.3%;阶段划分越多,优化后的总抽出量越少,抽出井个数越多;将360 d的抽出时间分为4个阶段优化后,总抽出量相比于2个阶段的抽出量减少了2.8%,但第4阶段单日抽出速率只有274 m3/d,在保持总抽出量不变的情况下,增大第4阶段抽出速率至814 m3/d,可以将抽出时间缩短至300 d。Abstract: Taking the groundwater pumping scheme of a chlorinated hydrocarbon-contaminated site as an example, this paper used a numerical model combined algorithm and carried out optimization. The aim of pump-and-treat technology was that carbon tetrachloride concentration of the groundwater was less than 1500 μg/L after continuous extraction for 360 days. The optimization objective function was that the minimum total extraction volume. The simulation and optimization results showed that extraction volume of the initial wells, located in the central axis of the contaminated plume, was better than that of the uniform distribution. We divided the 360 days into two stages, and found that the total extraction volume reduced by 8.3% compared with the constant model. After dividing the 360-day extraction time into four stages, the optimized total extraction volume was reduced by 2.8% compared with the two stages model. However, the pumping rate of the fourth stage was only 274 m3/d. When keeping the total extraction amount stable, increasing the extraction rate of the fourth stage to 814 m3/d could shorten the extraction time to 300 days.
-
[1] ROSNER D, MARKOWITZ G. Persistent pollutants:a brief history of the discovery of the widespread toxicity of chlorinated hydrocarbons[J]. Environmental Research, 2013, 120(1):126-133. [2] 高存荣, 王俊桃. 我国69个城市地下水有机污染特征研究[J]. 地球学报, 2011,32(5):581-591. [3] 宋震宇, 杨伟, 王文茜, 等. 氯代烃污染地下水修复技术研究进展[J]. 环境科学与管理, 2014, 39(4):104-106. [4] 宋汉周, ALLAN D W. 抽出处理措施的有效性评价:某碳酸盐岩含水层中地下水有机污染及其去除研究之三[J]. 河海大学学报(自然科学版), 2000, 28(4):67-98. [5] 蒲敏.污染场地地下水抽出处理技术研究[J].环境工程,2017,35(4):6-10. [6] 吴玉成. 治理地下水有机污染抽出处理技术影响因素分析[J]. 水文地质工程地质, 1998, 25(1):27-29,42. [7] 白相东, 张艳, 刘智荣, 等. 某冶炼厂污染场地抽出-处理技术优化方案研究[J]. 防灾科技学院学报, 2012, 14(4):26-29. [8] 顾栩, 杜鹏, 单慧媚, 等. 水力截获技术在地下水污染修复中的应用:以某危险废物填埋场为例[J]. 安全与环境工程, 2014, 21(4):52-58. [9] 宫志强, 陈坚, 杨鑫鑫, 等. 某铬污染场地地下水抽水方案优化[J]. 环境工程, 2019, 37(5):1-3,75. [10] HUANG C L, MAYER A S. Pump-and-treat optimization using well locations and pumping rates as decision variables[J]. Water Resources Research, 1997, 33(5):1001-1012. [11] CHANG L C, CHU H J, HSIAO C T. Optimal planning of a dynamic pump-treat-inject groundwater remediation system[J]. Journal of Hydrology (Amsterdam), 2007, 342(3/4):295-304. [12] KAZEMZADEH-PARSI M J, DANESHAMAND F, AHMADFARD M A, et al. Optimal groundwater remediation design of pump and treat systems via a simulation-optimization approach and firefly algorithm[J]. Journal of Applied Stats, 2015, 47(1):1-17. [13] PARK Y C. Cost-effective optimal design of a pump-and-treat system for remediating groundwater contaminant at an industrial complex[J]. Geosciences Journal, 2016, 20(6):891-901. [14] AKBARPOUR A, ZEYNALI M J, TAHROUDI M N, et al. Locating optimal position of pumping wells in aquifer using meta-heuristic algorithms and finite element method[J]. Water Resources Management, 2020, 34(1):21-34. [15] 卞荣伟, 宋健, 孙晓敏,等.MGO软件在地下水污染抽出-处理方案优化中的应用[J]. 地下水, 2018,40(3):12-15. [16] BEAR J, SUN Y W. Optimization of pump-treat-inject (PTI) design for the remediation of a contaminated aquifer:multi-stage design with chance constraints[J]. Journal of Contaminant Hydrology, 1998, 29(3):225-244. [17] WANG Y, XIAO W H, WANG Y C, et al. Simulating-optimizing coupled method for pumping well layout at a nitrate-polluted groundwater site[J]. IOP Conference Series Earth and Environmental, 2018, 191(1):012071. [18] 张双圣. 基于不确定理论的地下水污染源识别及抽出-处理优化方法研究[D].徐州:中国矿业大学,2019. [19] CHANG L C, CHU H J, HSIAO C T. Integration of optimal dynamic control and neural network for groundwater quality management[J]. Water Resources Management, 2012, 26(5):1253-1269. [20] SADEGHFAM S, HASSANZADEH Y, KHATIBI R, et al. Groundwater remediation through pump-treat-inject technology using optimum control by artificial intelligence (OCAI)[J]. Water Resources Management, 2019, 33(3):1123-1145. [21] MAJUMDER P, ELDHO T I. Artificial neural network and grey wolf optimizer based surrogate simulation-optimization model for groundwater remediation[J]. Water Resources Management, 2020, 34(2):763-783. [22] BECKER D J, MINSKER B S, GREENWALD R, et al. Reducing long-term remedial costs by transport modeling optimization[J]. Ground Water, 2006, 44(6):864-875. [23] 姜烈, 何江涛, 姜永海, 等地下水硝酸盐污染抽出处理优化方法模拟研究[J]. 环境科学, 2014,35(7):2572-2578. [24] 万鹏, 张旭, 李广贺, 等.基于模拟-优化模型的某场地污染地下水抽水方案设计[J]. 环境科学研究, 2016,(29):1608-1616. [25] 罗建男, 李多强, 范越, 等. 某垃圾填埋场地下水质监测井网优化设计:基于模拟优化法[J]. 中国环境科学, 2019, 39(1):198-204. [26] ZHENG C,WANG P P.MGO:A Modular Groundwater Optimizer Incorporating MODFLOW/MT3DMS,Documentation and User's Guide[R].The University of Alabama and Groundwater Research Ltd, Tuscaloosa,AL,2003. [27] WANG M, ZHENG C. Optimal remediation policy selection under general conditions[J]. Ground Water, 1997, 35(5):757-764.
点击查看大图
计量
- 文章访问数: 203
- HTML全文浏览量: 16
- PDF下载量: 9
- 被引次数: 0