APPLICATION OF ALKALI-HYDROLYZED RESIDUAL OF ACTIVATED SLUDGE AS A DENITRIFICATION CARBON SOURCE FOR TREATING AMMONIA WASTEWATER WITH A LOW C/N RATIO
-
摘要: 针对低C/N合成氨废水反硝化脱氮处理中碳源不足的难题,探究了以剩余污泥碱解液作为补充碳源的可行性。结果显示:与葡萄糖和甲醇相比,碱解液作为碳源时,体系的反硝化速率分别提高了25.3%和23.7%。通过优化实验条件获得最佳反硝化脱氮工艺参数:C/N=5.5,T=35 ℃,初始pH=8,水力停留时间为5 h。此条件下NO3--N去除率达86%以上,NO2--N无积累。将污泥碱解液用于A/O工艺处理大连化学工业公司低C/N合成氨废水,碱解液以稀释方式加入厌氧段,投加量使原低C/N合成氨氮废水C/N=5.5左右。A/O工艺连续运行结果显示:出水ρ(TN)<15 mg/L,ρ(NH4+-N)<5 mg/L,NOx--N基本无积累,出水氮素指标均达到GB 18918—2002《城镇污水处理厂污染物排放标准》一级A排放标准。研究证实了污泥碱解液适用于低C/N合成氨废水的处理,为此类废水的处理和剩余污泥的资源化处置提供了有力支撑。Abstract: This work investigated the feasibility of using alkali-hydrolyzed residual activated sludge as a denitrification carbon source to treat ammonia wastewater with a low C/N ratio. Batch experimental results showed that, compared to glucose and methanol, the denitrification rate using sludge alkali-hydrolysate was increased by 25.3% and 23.7%, respectively. The optimal parameters for nitrogen removal through denitrification were C/N=5.5, T=35 ℃, initial pH=8, and HRT=5 h. Under this conditions, NO3--N was almost completely removed without NO2--N accumulated. Subsequently, the sludge alkali-hydrolysate was applied to an A/O process to treat actual ammonia wastewater with a low C/N ratio. The A/O process was operated in continuous mode, and the sludge alkali-hydrolysate was supplemented in the anaerobic tank with an influent C/N ratio of 5.5. The effluent monitoring results showed that the ρ(TN)<15 mg/L, ρ(NH4+-N)<5 mg/L with almost no NOx--N accumulation, which all reached the first-level A emission limiting value in Discharge Standard of Pollutants for Municipal Wastewater treatment Plant. This work revealed that the sludge alkali-hydrolysate could be successfully used to treat actual ammonia wastewater with a low C/N ratio, and provided theoretical and practical support for treatment of nitrogen-containing wastewater and utilization of residual sludge.
-
[1] 陈林,王巧风.氨氮废水治理技术探讨与展望[J].化工管理,2020(29):66-67. [2] 吴丹,刘伟,张琦,等.高浓度氨氮废水处理方法研究进展[J].盐科学与化工,2020,49(4):10-15,19. [3] 周明明,陈龙喜,曾胜庭,等.餐厨垃圾水解酸化液作为外加碳源处理养猪废水[J].安徽农业科学,2020,48(8):80-83. [4] 戴晓虎.我国污泥处理处置现状及发展趋势[J].科学,2020,72(6):30-34. [5] 杨鹏,李伟,袁彧,等.不同热水解条件下剩余污泥固相组成变化研究[J].中国沼气,2020,38(4):13-19. [6] 陆钧皓.复合酶水解法提取剩余污泥中蛋白质的研究[D].上海:东华大学,2015. [7] 张万钦,戚丹丹,吴树彪,等.不同预处理方式对污泥厌氧发酵的影响[J].农业机械学报,2014,45(9):187-198. [8] 康晓荣,张光明,刘亚利,等.污泥碱解发酵液用于生活污水脱氮除磷的效果研究[J].水利水电技术,2012,43(9):23-25. [9] 赵虹焰.利用剩余污泥制备生物絮凝剂工艺条件及产物特性研究[D].大连:大连理工大学,2019. [10] 国家环境保护总局.《水和废水监测分析方法》编委会.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002. [11] YU W B,YANG J K,SHI Y F,et al.Roles of iron species and ph optimization on sewage sludge conditioning with fenton’s reagent and lime[J].Water Research,2016,95:124-133. [12] 赵樑,倪伟敏,贾秀英,等.初始pH值对废水反硝化脱氮的影响[J].杭州师范大学学报(自然科学版),2014,13(6):616-622. [13] 姜体胜,杨琦,尚海涛,等.温度和pH值对活性污泥法脱氮除磷的影响[J].环境工程学报,2007,1(9):10-14. [14] 张志,任洪强,张蓉蓉,等.pH值对好氧颗粒污泥同步硝化反硝化过程的影响[J].中国环境科学,2005,25(6):650-654. [15] 张洛红,李兴.活性污泥性质检测方法的比较研究[J].工业用水与废水,2011,42(6):89-93. [16] 曹艳晓.剩余污泥作为低碳氮比生活污水补充碳源的脱氮试验研究[D].重庆:重庆大学,2010. [17] 张雅静,王社平,王建军,等.水力停留时间对SBR工艺脱氮除磷效果的影响分析[J].水处理技术,2013,39(4):59-61,65. [18] 彭仡然.缺氧好氧塘+水解酸化塘+臭氧氧化+A/O工艺处理养猪废水的工程应用研究[D].南昌:南昌大学,2019. [19] 闫冬,何争光,韩艳萍,等.内回流比对分段进水循环A/O工艺系统性能的影响研究[J].工业水处理,2015,35(6):27-30. [20] BUENO R F,PIVELI R P,CAMPOS F,et al.Simultaneous nitrification and denitrification in the activated sludge systems of continuous flow[J].Environmental Technology,2018,39(20):2641-2652. [21] WANG H,TIAN Z Y,WANG H,et al.Optimization and reaction kinetics analysis for phosphorus removal in struvite precipitation process[J].Water Environment Research,2020,92(8):1162-1172.
点击查看大图
计量
- 文章访问数: 139
- HTML全文浏览量: 34
- PDF下载量: 11
- 被引次数: 0