A MULTI-METHOD COMPARISON OF INFLUENCING FACTORS AND VALUE OF RUNOFF COEFFICIENT OF URBAN GREEN SPACE IN BEIJING
-
摘要: 为明确城市绿地产流过程的影响因素,比较不同径流系数计算方法的原理和特征,以北京城市绿地为例,采用理论计算、模型模拟和试验实测3类方法,比较KW(kinematic wave)方程、SCS-CN(soil conservation service curve number)算法、Hydrus-1D模型和试验测试4种方式,定量分析在不同降雨、土壤、地形条件下的产流过程、影响因素及其对应的径流系数。研究表明,降雨量(重现期)、雨型、土壤物理性质(渗透性、前期湿润程度等)、绿地坡度等因素对产流过程有较大影响,不同条件和算法下绿地径流系数取值为0~0.53。建议在工程应用中,应结合场地条件和设计目标,选择适宜的径流系数确定方法和模型参数。研究成果可为我国城市绿地的径流系数研究提供参考。
-
关键词:
- 城市绿地 /
- 径流系数 /
- kinematicwave /
- SCS-CN /
- Hydrus-1D
Abstract: The purpose of the study is to clarify the influencing factors of urban green space runoff production process, compare the principle and characteristics of different calculation of runoff coefficient. Taking the urban green space in Beijing as an example, the study used three kinds of methods: theoretical calculation, model simulation and experimental measurement to compare KW(kinematic wave) equation, SCS-CN(soil conservation service curve number) algorithm, Hydrus-1 D model and experimental measurement, to quantitative analysis of runoff production processes, influencing factors and corresponding runoff coefficients under different rainfall, soil and topographic condition. Experiments showed that rainfall(recurrence period), rain pattern, physical properties of soil(soil permeability, pre-wetting degree, etc.) and green slope all had great influence on the runoff production process. In different conditions and algorithms, the value range of green runoff coefficient was 0~0.53. The results showed that in engineering application, the suitable method and model parameters of runoff coefficient should be selected in combination with site conditions and design objectives, which could provide references for the study of runoff coefficients of urban green space in China.-
Key words:
- urban green space /
- runoff coefficient /
- kinematic wave /
- SCS-CN /
- Hydrus-1D
-
[1] 中华人民共和国住房和城乡建设部.室外排水设计规范(2014年版):GB 50014-2006[S]. 北京:中国计划出版社,2016. [2] PEKTAŞC A O,CIGIZOGLU H K.ANN hybrid model versus ARIMA and ARIMAX models of runoff coefficient[J].Journal of Hydrology,2013,500:21-36. [3] 倪侨生.雨水调节池容积的计算[J].土木工程学报,1964(4):72-82. [4] MERZ R,BLÖSCHL G,PARAJKA J.Spatio-temporal variability of event runoff coefficients[J].Journal of Hydrology,2006,331(3/4):591-604. [5] LI C L,LIU M,HU Y M,et al.Evaluating the runoff storage supply-demand structure of green infrastructure for urban flood management[J]. Journal of Cleaner Production,2021,280:124420. [6] SRIWONGSITANON N,TAESOMBAT W.Effects of land cover on runoff coefficient[J].Journal of Hydrology,2011,410 (3/4):226-238. [7] KIM H W,KIM J H,LI W,et al.Exploring the impact of green space health on runoff reduction using NDVI[J].Urban Forestry&Urban Greening,2017,28:81-87. [8] GRILLONE G, BAIAMONTE G, FRANCESCO.Empirical determination of the average annual runoff coefficient in the mediterranean area[J]. American Journal of Applied Sciences,2013,11(1). [9] REN X W,HONG N,LI L F,et al.Effect of infiltration rate changes in urban soils on stormwater runoff process[J].Geoderma,2020,363:114158. [10] 胡振龙.山地城市典型下垫面径流系数研究[D]. 重庆:重庆大学,2016. [11] 中华人民共和国住房和城乡建设部. 海绵城市建设技术指南:低影响开发雨水系统构建(试行)[M].北京:中国建筑工业出版社,2014. [12] 北京市水务局.北京市水资源公报(2019年)[Z].北京:北京市水务局,2020. [13] 马秀梅.北京城市不同绿地类型土壤及大气环境研究[D]. 北京:北京林业大学,2007. [14] 北京市规划委员会.雨水控制与利用工程设计规范DB11/685-2013[S].北京:北京市规划委员会,2013. [15] 马洪涛,王军,张晓昕,等. 北京市雨水系统规划设计重现期研究[J].给水排水,2013,49(5):50-55. [16] 牟金磊.北京市设计暴雨雨型分析[D].兰州:兰州交通大学,2011. [17] 王思思,王榕,苏毅,等.北京城区绿地土壤渗透性能及其对降雨产流的影响分析[J].环境工程,2020,38(4):86-91. [18] GUO J C Y,HSU E S C.Diverging kinematic wave flow[J].Journal of Irrigation and Drainage Engineering,2014,140 (11):04015006. [19] 王榕.建筑与小区绿地土壤物理性质和微地形对降雨产流的影响研究[D].北京:北京建筑大学,2020. [20] GUO J C Y,URBONAS B.Volume-based runoff coefficients for urban catchments [J].Journal of Irrigation & Drainage Engineering,2014,140(2):04013013. [21] 杨钢,徐宗学,赵刚,等.基于SWMM模型的北京大红门排水区雨洪模拟及LID效果评价[J].北京师范大学学报(自然科学版),2018,54(5):628-634. [22] 常晓栋,徐宗学,赵刚,等.基于SWMM模型的城市雨洪模拟与LID效果评价:以北京市清河流域为例[J].水力发电学报,2016,35(11):84-93. [23] AHN S S,PARK R S,KO S H,et al.Study on SCS CNestimation and flood flow characteristics according to the classification criteria of hydrologic soil groups[J].2006.DOI: 10.5322/JES.2006.15.8.775. [24] 李家科,赵瑞松,李亚娇.基于HYDRUS-1D模型的不同生物滞留池中水分及溶质运移特征模拟[J].环境科学学报,2017,37(11):4150-4159. [25] ŠIMU·NEK J,GENUCHTEN M T V,ŠEJNA M.Development and applications of the HYDRUS and STANMOD software packages and related codes[J].Vadose Zone Journal,2008,72(2):587-600. [26] ŠIMU·NEK MŠJ,SAITO H,SAKAI M,et al.Van Genuchten.The HYDRUS-1D software package for simulating the onedimensional movement of water,heat,and multiple solutes in variably-saturated media[M].2013. [27] 范严伟,黄宁,马孝义,等.应用HYDRUS-1D模拟砂质夹层土壤入渗特性[J].土壤,2016,48(1):193-200. [28] MERZ R,BLOESCHL G.A regional analysis of event runoff coefficients with respect to climate and catchment characteristics in Austria[J].Water Resources Research,2009,45(1):639-643. [29] KIRNBAUER R,BLÖSCHL G,HAAS P,et al.Identifying spacetime patterns of runoff generation:a case study from the löhnersbach catchment,austrian alps[J].Advances in Global Change Research,2005,23:309-320. [30] 史培军,袁艺,陈晋.深圳市土地利用变化对流域径流的影响[J].生态学报,2001,21(7):1041-1049,1217. [31] 刘春春,刘万青,王宁,等.SCS模型在无资料地区径流模拟估算中的应用:以清河流域为例[J].中国农业资源与区划,2019,40(12):56-63. [32] 王瑾杰,丁建丽,张成.普适降雨-径流模型SCS-CN的研究进展[J].中国农村水利水电,2015(11):43-47,54. [33] 成志轩,金家明,王珺.雨型对低影响开发设施径流控制效果的影响[J].中国给水排水,2019,35(1):134-138. [34] 陈浩,仇丽娜,杨涛,等.北方轻型透水性绿色屋顶土层厚度的蓄滞效应研究[J].水利水电技术,2019,50(增刊2):17-24. [35] 冷佩,宋小宁,李新辉.坡度的尺度效应及其对径流模拟的影响研究[J].地理与地理信息科学,2010,26(6):60-62,74.
点击查看大图
计量
- 文章访问数: 186
- HTML全文浏览量: 36
- PDF下载量: 3
- 被引次数: 0