中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电催化臭氧技术降解啶虫脒

马永双 展巨宏 王会姣 王玉珏

毕鑫祺, 龚志伟, 马杰, 周立昌, 江锦琦, 郭刚. 好氧/厌氧环境对微生物降解典型微塑料效能影响研究[J]. 环境工程, 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009
引用本文: 马永双, 展巨宏, 王会姣, 王玉珏. 电催化臭氧技术降解啶虫脒[J]. 环境工程, 2021, 39(12): 107-113,187. doi: 10.13205/j.hjgc.202112016
BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009
Citation: MA Yong-shuang, ZHAN Ju-hong, WANG Hui-jiao, WANG Yu-jue. STUDY ON ABATEMENT OF ACETAMIPRID BY ELECTRO-PEROXONE PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 107-113,187. doi: 10.13205/j.hjgc.202112016

电催化臭氧技术降解啶虫脒

doi: 10.13205/j.hjgc.202112016
基金项目: 

国家水体污染控制与治理科技重大专项(2017ZX07202-001)。

详细信息
    作者简介:

    马永双(1996-),男,硕士,主要研究方向为电化学高级氧化技术。mys18@mails.tsinghua.edu.cn

    通讯作者:

    王玉珏(1975-),男,副教授,主要研究方向为水处理技术研究。wangyujue@tsinghua.edu.cn

STUDY ON ABATEMENT OF ACETAMIPRID BY ELECTRO-PEROXONE PROCESS

  • 摘要: 研究了臭氧氧化、紫外/臭氧(UV/O3)和电催化臭氧(electro-peroxone, EP)3种技术降解啶虫脒的机制,比较了3种技术降解地下水和地表水中啶虫脒的效率和能耗(使用EEO指标表征)。发现啶虫脒为臭氧难氧化物质,与臭氧(O3)和羟基自由基(·OH)的二级反应速率常数分别为(0.05±0.01) mol/(L·s)、(2.8±0.2)×109 mol/(L·s)。经6 min臭氧氧化后,地下水和地表水中的啶虫脒去除率仅为26%和64%。与之相比,UV/O3和EP技术可以完全去除地下水和地表水中的啶虫脒。臭氧氧化、UV/O3和EP技术降解啶虫脒的能耗分别为0.11~0.27,1.22~1.24,0.12~0.24 kW·h/m3。结果表明,EP技术是一种去除饮用水中啶虫脒的高效低耗技术。
  • [1] MORRISSEY C A,MINEAU P,DEVRIES J H,et al.Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates:a review[J].Environment International,2015,74:291-303.
    [2] BARBOSA M O,MOREIRA N F,EIBEIRO A R,et al.Occurrence and removal of organic micropollutants:an overview of the watch list of EU Decision 2015/495[J].Water Research,2016,94:257-279.
    [3] SHI J L,ZHANG R N,PEI Y L,et al.Exposure to acetamiprid influences the development and survival ability of worker bees (Apis mellifera L.) from larvae to adults[J].Environmental Pollution,2020,266(Pt 2):115345.
    [4] LU Z T,LI M X,FANG Y L,et al.The mechanism of damage to the posterior silk gland by trace amounts of acetamiprid in the silkworm,Bombyx mori[J].Pesticide Biochemistry and Physiology,2020,170:104676.
    [5] KOCAMAN A Y,TOPAKTAS M.In vitro evaluation of the genotoxicity of acetamiprid in human peripheral blood lymphocytes[J].Environmental and Molecular Mutagenesis,2007,48(6):483-490.
    [6] SADARIA A M,SUPOWIT S D,HALDEN R U.Mass balance assessment for six neonicotinoid insecticides during conventional wastewater and wetland treatment:nationwide reconnaissance in united states wastewater[J].Environmental Science & Technology,2016,50(12):6199-6206.
    [7] VON SONNTAG C,VON GUNTEN U.Chemistry of ozone in water and wastewater treatment:from basic principles to applications[M].2012,London:Iwa Publishing.,1-303.
    [8] WANG H J,ZHAN J H,GAO L W,et al.Kinetics and mechanism of thiamethoxam abatement by ozonation and ozone-based advanced oxidation processes[J].Journal of Hazardous Materials,2020,390:122180.
    [9] YUAN S,LI Z X,WANG Y J.Effective degradation of methylene blue by a novel electrochemically driven process[J].Electrochemistry Communications,2013,29:48-51.
    [10] YAO W K,WANG X F,YANG H W,et al.Removal of pharmaceuticals from secondary effluents by an electro-peroxone process[J].Water Research,2016,88:826-835.
    [11] LI Y K,SHEN W H,FU S J,et al.Inhibition of bromate formation during drinking water treatment by adapting ozonation to electro-peroxone process[J].Chemical Engineering Journal,2015,264:322-328.
    [12] LIN Z R,YAO W K,WANG Y,et al.Perchlorate formation during the electro-peroxone treatment of chloride-containing water:effects of operational parameters and control strategies[J]. Water Research,2016,88:691-702.
    [13] FIKIRDESICI-ERGEN S,AKSU P,ALTINDAG A.Effects of ozone treatment on the degradation and toxicity of several pesticides in different groups[J]. Journal of Agricultural Sci-Tarim Bili,2018,24(2):245-255.
    [14] CHEN L W,CAI T M,CHENG C,et al.Degradation of acetamiprid in UV/H2O2 and UV/persulfate systems:a comparative study[J]. Chemical Engineering Journal,2018,351:1137-1146.
    [15] GONZALEZ T,DOMINGUEZ J R,CORREIA S.Neonicotinoids removal by associated binary,tertiary and quaternary advanced oxidation processes:synergistic effects,kinetics and mineralization[J].Journal of Environmental Management,2020,261:110156.
    [16] FASNABI P A,MADHU G,SOLOMAN P A.Removal of acetamiprid from wastewater by Fenton and Photo-Fenton processes-optimization by response surface methodology and kinetics[J].Clean-Soil,Air,Water,2016,44(6):728-737.
    [17] WANG Y J,LI X Y,ZHEN L M,et al.Electro-Fenton treatment of concentrates generated in nanofiltration of biologically pretreated landfill leachate[J].Journal of Hazard Mater,2012,229/230:115-121.
    [18] BADER H,HOIGNE J.Determination of ozone in water by the indigo method[J].Water Research,1981,15(4):449-456.
    [19] HUBER M M,CANONICA S,PARK G Y,et al.Oxidation of pharmaceuticals during ozonation and advanced oxidation processes[J].Environmental Science & Technology,2003,37(5):1016-1024.
    [20] LEE Y,GERRITY D,LEE M,et al.Prediction of micropollutant elimination during ozonation of municipal wastewater effluents:use of kinetic and water specific information[J].Environmental Science Technology,2013,47(11):5872-5881.
    [21] ROSENFELDT E J,LINDEN K G,CANONICA S,et al.Comparison of the efficiency of center dot OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2[J].Water Research,2006,40(20):3695-3704.
    [22] CRUZ-ALCALDE A,SANS C,ESPLUGAS S.Priority pesticides abatement by advanced water technologies:the case of acetamiprid removal by ozonation[J].Science of the Total Environment,2017,599:1454-1461.
    [23] PPDB.Pesticide Properties DataBase[EB/OL].http://sitem.herts.ac.uk/aeru/ppdb/en/index.htm,2012.
    [24] DELL’ARCIPRETE M L.Reactivity of hydroxyl radicals with neonicotinoid insecticides:mechanism and changes in toxicity[J].Photochemical & Photobiological Sciences,2009,8(7):1016-1023.
    [25] HAN W C,TIAN Y,SHEN X M.Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity:an overview[J].Chemosphere,2018,192:59-65.
    [26] VON SONNTAG C,VON GUNTEN U.Chemistry of ozone in water and wastewater treatment.From Basic Principles to Applications[M].IWA Publishing,2012.
    [27] FRANGOS P,WANG H,SHEN W,et al.A novel photoelectro-peroxone process for the degradation and mineralization of substituted benzenes in water[J].Chemical Engineering Journal,2016,286:239-248.
    [28] WANG H J,ZHAN J H,YAO W K,et al.Comparison of pharmaceutical abatement in various water matrices by conventional ozonation,peroxone (O3/H2O2),and an electro-peroxone process[J].Water Research,2018,130:127-138.
    [29] WANG Y X,ZHONG Z,MUHAMMAD Y,et al.Defect engineering of NH2-MIL-88B(Fe) using different monodentate ligands for enhancement of photo-Fenton catalytic performance of acetamiprid degradation[J].Chemical Engineering Journal,2020,398:125684.
    [30] CHEN L W,CAI T M,CHENG C,et al.Degradation of acetamiprid in UV/H2O2 and UV/persulfate systems:a comparative study[J].Chemical Engineering Journal,2018,351:1137-1146.
  • 期刊类型引用(8)

    1. 赵潜宜,周王子,程晓君. 基于智慧感知体系的流域控制断面污染负荷分析. 水利水电快报. 2025(02): 94-98+113 . 百度学术
    2. 陈睿星,肖倩,朱紫薇. 城市污水系统碳排放结构及减排路径研究——以深圳市为例. 给水排水. 2025(01): 49-54 . 百度学术
    3. 沈凌,张宏,周合喜. 土地集约型高排放标准半地下水质净化厂设计. 净水技术. 2025(02): 174-180 . 百度学术
    4. 苏善昭,朱贵兵. 溯源排查在水环境治理中的作用研究——以深圳市宝安区西乡河流域为例. 水上安全. 2025(03): 4-6 . 百度学术
    5. 刘丽娜,王治霖. 内蒙古地区生态清洁小流域综合治理分析. 绿色科技. 2024(12): 5-8+43 . 百度学术
    6. 汤钟,喻灵敏. 基于“厂网河城”思路的小流域水质稳定达标探索及实践. 中国市政工程. 2024(06): 42-47+158 . 百度学术
    7. 孙方源. “董大水库”水源地保护的水污染防治技术研究. 中国市政工程. 2024(06): 53-57+159-160 . 百度学术
    8. 陈正侠,张潇月,于金旗,张鹤清,佟庆远,徐常青,贾海峰. 面向水质目标管理的城镇河湖排口雨水径流控制方法与技术. 给水排水. 2024(12): 15-20+27 . 百度学术

    其他类型引用(0)

  • 加载中
计量
  • 文章访问数:  153
  • HTML全文浏览量:  20
  • PDF下载量:  6
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-12-30
  • 网络出版日期:  2022-03-30
  • 刊出日期:  2022-03-30

目录

    /

    返回文章
    返回