PREDICTION OF PM2.5 AND PM10 CONCENTRATION IN GUANGZHOU BASED ON DEEP LEARNING MODEL
-
摘要: 精准预测大气污染颗粒物PM2.5、PM10浓度能为大气污染防治提供科学依据,但目前较多PM2.5和PM10浓度预测在缺少污染源排放清单和能见度数据时,预测精度不高。而目前深度学习模型应用于PM2.5和PM10浓度预测的研究还鲜见报道。基于广州市2015年6月1日—2018年1月10日的空气质量和气象监测历史数据,分别构建了随机森林模型(RF)、XGBoost模型2种传统的机器学习模型和长短时记忆网络(LSTM)、门控循环单元网络(GRU)2种深度学习模型,并对广州市的PM2.5、PM10日均浓度值进行预测。结果表明:在缺少污染源排放清单和能见度数据时,4种模型也能较好地预测PM2.5、PM10日均浓度。根据MSE、RMSE、MAPE、MAE和R2等评价指标,对4个模型的PM2.5、PM10预测效果进行测评,得出深度学习GRU模型预测效果均为最佳,RF模型的预测结果均为最差。相比目前研究及应用较多的RF模型、XGBoost模型、LSTM模型,基于深度学习的GRU模型能更好地预测PM2.5、PM10浓度。Abstract: Precisely predicting the concentration of PM2.5 and PM10 in air pollution can provide a scientific basis for the prevention and control of air pollution. However, in the absence of pollution source emission inventory and visibility data, the prediction accuracy of the existing PM2.5 and PM10 concentration prediction methods are not high. In addition, it is rarely reported that the current deep learning models have been applied successively to PM2.5 and PM10 concentration prediction research. Based on the historical air quality monitoring data and weather monitoring historical data in Guangzhou from June 1, 2015 to January 10, 2018, two traditional machine learning models(random forest model(RF) and XGBoost model) and two deep learning models(short-long-term memory network(LSTM) and gated recurrent unit network(GRU) were constructed respectively, to predict the daily average concentration of PM2.5 and PM10 in Guangzhou. The results showed that the four models could also well predict the daily average concentration of PM2.5 and PM10 in the absence of pollution source emission inventory and visibility data. According to the evaluation metrics, i.e., MSE, RMSE, MAPE, MAE, and R2, the PM2.5 and PM10 prediction effects of the four models were evaluated. The results indicated that the prediction effect of the deep GRU model was the best and the prediction results of the RF model were the worst. Compared with the commonly used RF model, XGBoost model, and LSTM model, the GRU model based on deep learning could better predict PM2.5 and PM10 concentration.
-
Key words:
- PM2.5 /
- PM10 /
- deep learning /
- concentration prediction /
- influencing factors
-
[1] 刘佳澍,顾远,马帅帅,等.常州夏冬季PM2.5中无机组分昼夜变化特征与来源解析[J].环境科学,2018,39(3):980-989. [2] 段文娇,郎建垒,程水源,等.京津冀地区钢铁行业污染物排放清单及对PM2.5影响[J].环境科学,2018,39 (4):1445-1454. [3] 余钟奇,瞿元昊,周广强,等.2018年秋冬季长江三角洲区域PM2.5污染来源数值研究[J].中国环境科学,2020,40(10):4237-4246. [4] 黄小刚,邵天杰,赵景波,等.汾渭平原PM2.5浓度的影响因素及空间溢出效应[J].中国环境科学,2019,39(8):3539-3548. [5] 黄小刚,邵天杰,赵景波,等.长江经济带空气质量的时空分布特征及影响因素[J].中国环境科学,2020,40(2):874-884. [6] 陈波,李少宁,杨新兵,等.北京春季PM2.5和PM10污染水平及影响因素研究[J].内蒙古农业大学学报(自然科学版),2018,39(5):36-44. [7] 肖悦,田永中,许文轩,等.近10年中国空气质量时空分布特征[J].生态环境学报,2017,26(2):243-252. [8] 黄含含,王羽琴,李升苹,等.西安市PM2.5中水溶性离子的季节变化特征[J].环境科学,2020,41(6):2528-2535. [9] 杨文涛,姚诗琪,邓敏,等.北京市PM2.5时空分布特征及其与PM10关系的时空变异特征[J].环境科学,2018,39(2):684-690. [10] 赵雪,侯丽丽,王鑫龙,等.基于LUR模型的2019年北京地区PM2.5与PM10浓度空间分异模拟[J].环境科学学报,2020,40(11):4060-4069. [11] 郭庆元,杨晓春,吴其重,等.基于数值模拟对西安地区冬季一次重污染过程PM2.5区域来源解析[J].环境科学学报,2020,40(9):3103-3111. [12] YU M F,ZHU Y,LIN C J,et al.Effects of air pollution control measures on air quality improvement in Guangzhou,China[J].Journal of Environmental Management,2019,244:127-137. [13] SHEN L,JACOB D J,MICKLEY L J,et al.Insignificant effect of climate change on winter haze pollution in Beijing [J].Atmospheric Chemistry and Physics,2018,18 (23):17489-17496. [14] 李岚淼,李龙国,李乃稳.城市雾霾成因及危害研究进展[J].环境工程,2017,35(12):92-97,104. [15] 雷钦.大气细颗粒物PM2.5的危害及其治理策略[J].低碳世界,2020,10(11):23-24. [16] ERIC L,ISAC L,MARIANNE H,et al.Ambient ultrafine particle concentration and incidence of childhood cancers[J].Environment International,2020,145:106135. [17] SOURANGSU C,SAGNIK D,SMITH K R.Ambient PM2.5 exposure and expected premature mortality to 2100 in India under climate change scenarios[J].Nature Communications,2018,9(1). [18] 周广强,谢英,吴剑斌,等.基于WRF-Chem模式的华东区域PM2.5预报及偏差原因[J].中国环境科学,2016,36(8):2251-2259. [19] CHEN J J,LU J,AVISE J C,et al.Seasonal modeling of PM2.5 in California’s San Joaquin Valley[J].Atmospheric Environment,2014,92:182-190. [20] 康俊锋,黄烈星,张春艳,等.多机器学习模型下逐小时PM2.5预测及对比分析[J].中国环境科学,2020,40(5):1895-1905. [21] DEUKWOO L,SOOWON L.Hourly prediction of particulate matter (PM2.5) concentration using time series data and random forest[J].KIPS Transactions on Software and Data Engineering,2020,9(4). [22] 黄赫,周勇,刘宇杰,等.基于多源环境变量和随机森林的农用地土壤重金属源解析:以襄阳市襄州区为例[J].环境科学学报,2020,40(12):4548-4558. [23] 史飞飞,周秉荣,颜亮东,等.近32年隆宝高寒湿地时空变化特征及其气候驱动力分析[J].高原气象,2020,39(6):1282-1294. [24] 刘志壮,吕谋,周国升.基于小波组合模型的短期城市用水量预测[J].给水排水,2020,56(10):110-114,131. [25] 郭宇龙,李岚涛,陈伟强,等.基于红边光谱特征和XGBoost算法的冬小麦叶绿素浓度估算研究[J].红外,2020,41(11):33-43. [26] 唐科,秦敏,赵星,等.基于Stacking集成学习模型的气态亚硝酸预测[J].中国环境科学,2020,40(2):582-590. 期刊类型引用(15)
1. 李鑫洋,刘娟. 基于数学模型的PM_(2.5)月尺度浓度预测研究. 中国环境监测. 2025(01): 180-190 . 百度学术
2. 张弛,陈国兴,杨洪涛. 利用深度学习预报美国东北部日降水分布. 大气科学学报. 2024(01): 55-64 . 百度学术
3. 谢琪,夏飞,袁博. 基于CEEMDAN-SE-BiLSTM模型的西安市PM_(2.5)浓度预测. 环境工程. 2024(08): 105-115 . 本站查看
4. 沈金星,刘沁鑫,封学军. 基于特征气象因素和深度学习组合模型的干散货港口PM_(10)浓度预测. 环境科学. 2024(09): 5179-5187 . 百度学术
5. 李细生,喻雨知,杨云芸,张华,肖秧琳,李巧媛,李源. 基于机器学习的长株潭城市群PM_(2.5)重污染预报. 环境监测管理与技术. 2024(05): 13-19 . 百度学术
6. 王玲玲,欧奕含,刘霭薇,罗伟,段修荣,李强,陈婷,邹长武. 基于气象和遥感数据自贡地区PM_(2.5)浓度拟合研究. 环境生态学. 2024(12): 9-18 . 百度学术
7. 叶黎明,施式亮,鲁义,李贺. 融合特征选取与机器学习的煤矿安全生产态势预测. 湖南科技大学学报(自然科学版). 2024(04): 28-36 . 百度学术
8. 刘思洋,曹馨元,刘照,李晓妍. 基于深度学习的沈阳市春节期间PM_(2.5)浓度预测研究. 当代化工研究. 2023(04): 86-88 . 百度学术
9. 李柚洁,赵顺昱,杨萍,王业林. 基于数据分解的大气污染物短期预测组合方法综述. 环境工程. 2023(04): 213-224 . 本站查看
10. 王辉,贾积身,郭双冰,赵国喜. 基于Hausdorff分数阶灰色季节模型的空气质量预测——以西安市为例. 河南科技学院学报(自然科学版). 2023(04): 64-75 . 百度学术
11. 李细生,陈媛,罗慧妮,张克非,喻雨知,李巧媛,张华,易飞. 湖南空气质量预报中的数据预处理和特征工程. 中国环境监测. 2023(04): 185-195 . 百度学术
12. 周佩,杨凡,韦骏. 基于最优城市匹配神经网络模型的PM_(2.5)插值方法. 北京大学学报(自然科学版). 2023(05): 793-800 . 百度学术
13. 杨长春,聂倩倩. 面向PM_(2.5)预测的时间序列分解与机器学习融合模型. 安全与环境学报. 2023(12): 4600-4608 . 百度学术
14. 李子熠,张天宇,李鸿强. 基于XGBoost和LSTM组合模型的PM2.5浓度预测. 河北建筑工程学院学报. 2023(04): 219-223 . 百度学术
15. 董浩,孙琳,欧阳峰. 基于Informer的PM_(2.5)浓度预测. 环境工程. 2022(06): 48-54+62 . 本站查看
其他类型引用(17)
-

计量
- 文章访问数: 618
- HTML全文浏览量: 136
- PDF下载量: 25
- 被引次数: 32