中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光催化记忆材料在环境领域的应用研究进展

张弛 周心怡 李轶

张弛, 周心怡, 李轶. 光催化记忆材料在环境领域的应用研究进展[J]. 环境工程, 2021, 39(12): 153-158. doi: 10.13205/j.hjgc.202112023
引用本文: 张弛, 周心怡, 李轶. 光催化记忆材料在环境领域的应用研究进展[J]. 环境工程, 2021, 39(12): 153-158. doi: 10.13205/j.hjgc.202112023
ZHANG Chi, ZHOU Xin-yi, LI Yi. RESEARCH PROGRESS OF APPLICATION OF MATERIALS WITH PHOTOCATALYTIC MEMORY IN FIELD OF ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 153-158. doi: 10.13205/j.hjgc.202112023
Citation: ZHANG Chi, ZHOU Xin-yi, LI Yi. RESEARCH PROGRESS OF APPLICATION OF MATERIALS WITH PHOTOCATALYTIC MEMORY IN FIELD OF ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 153-158. doi: 10.13205/j.hjgc.202112023

光催化记忆材料在环境领域的应用研究进展

doi: 10.13205/j.hjgc.202112023
基金项目: 

中央高校基本科研业务费专项资金资助(B210202101)。

国家自然科学基金项目(51779076)

国家重点研发计划(2019YFC0408301)

详细信息
    作者简介:

    张弛(1991-),女,讲师,主要研究方向为环境功能材料研发与水环境修复。zhangchi.hhu@qq.com

    通讯作者:

    李轶(1975-),男,教授,主要研究方向为水资源保护与水生态修复。envly@hhu.edu.cn

RESEARCH PROGRESS OF APPLICATION OF MATERIALS WITH PHOTOCATALYTIC MEMORY IN FIELD OF ENVIRONMENT

  • 摘要: 光催化技术作为一种新兴的高效可持续技术,在环境领域具有广泛的应用前景。然而,多数光催化材料在失去外界光源的能量供应后,短时间内不再产生电子空穴对,从而迅速丧失催化反应活性。但光催化记忆材料具有独特的催化记忆效应,即在黑暗条件下仍可表现出一定的催化活性,进而克服了以上难题。主要概述了光催化记忆材料的基本工作原理,将现有的光催化记忆材料归类,并总结了光催化记忆材料在环境领域的主要应用方向,包括新能源的生产、难降解有机污染物的氧化去除、重金属污染物的还原去除及病原微生物的灭活,最后展望了光催化记忆材料的发展前景。
  • [1] 卢晓兰.浅谈水污染及治理技术[J].技术与市场,2014,23(9):20-22.
    [2] 雷春生,朱晓锋,高雯,等.复配表面活性剂协同促进氨氮吹脱效能研究[J].中国给水排水,2016,32(5):77-80.
    [3] 吕伯宇,李思凡,商丽艳.生物法处理工业废水的研究进展[J].当代化工,2014,43(3):432-434.
    [4] LI Q,LI Y W,WU P G,et al.Palladium oxide nanoparticles on nitrogen-doped titanium oxide:accelerated photocatalytic disinfection and post-illumination catalytic “memory”[J].Advanced Materrials,2008,20(19):3717-3723.
    [5] LI Q,LI Y W,LIU Z Q,et al.Memory antibacterial effect from photoelectron transfer between nanoparticles and visible light photocatalyst[J].Material Chemistry,2010,20(6):1068-1072.
    [6] TATSUMA T,SAITOH S,OHKO Y,et al.TiO2-WO3 photoelectrochemical anticorrosion system with an energy storage ability[J].Chemical Materials,2001,13(9):2838-2842.
    [7] TATSUMA T,SAITOH S,NGAOTRAKANWIWAT P,et al.Energy storage of TiO2-WO3 photocatalysis systems in the gas phase[J].Langmuir,2002,18(21):7777-7779.
    [8] 朱红庆,杨兵,魏世强,等.微米SiC/石墨烯复合物光催化降解罗丹明B[J].环境科学,2020,41(2):756-762.
    [9] TAKAHASHI Y,TATSUMA T.Oxidative energy storage ability of a TiO2-Ni(OH)2 bilayer photocatalyst[J].Langmuir,2005,21(26):12357-12361.
    [10] HUANG H,JIANG L,ZHANG W K,et al.Photoelectrochromic properties and energy storage of TiO2-xNx/NiO bilayer thin films[J].Solar Energy Materials and Solar Cells,2010,94(2):355-359.
    [11] NG C,NG Y H,IWASE A,et al.Visible light-induced charge storage,on-demand release and self-photorechargeability of WO3 film[J].Physical Chemistry Chemical Physic,2011,13(29):13421-13426.
    [12] PARK H,BAK A,JEON T H,et al.Photo chargeable and dischargeable TiO2 and WO3 heterojunction electrodes[J].Applied Catalysis B:Environmental,2012,115/116:74-80.
    [13] LIU L M,YANG W Y,LI Q,et al.Synthesis of Cu2O nanospheres decorated with TiO2 nanoislands,their enhanced photoactivity and stability under visible light illumination,and their post-illumination catalytic memory[J].ACS Applied Materials & Interfaces,2014,6(8):5629-5639.
    [14] LIU L M,SUN W Z,YANG W Y,et al.Post-illumination activity of SnO2 nanoparticle-decorated Cu2O nanocubes by H2O2 production in dark from photocatalytic “memory”[J].Scientific Reports,2016,6(1):20878.
    [15] LIN H,DENG W H,ZHOU T H,et al.Iodine-modified nanocrystalline titania for photo-catalytic antibacterial application under visible light illumination[J].Applied Catalysis B:Environmental,2015,176/177:36-43.
    [16] 蒋悦,贾漫珂,邹彩琼,等.碘掺杂TiO2可见光光催化性能研究[J].环境工程学报,2013,7(3):975-980.
    [17] DONG F,XIONG T,SUN Y J,et al.A semimetal bismuth element as a direct plasmonic photocatalyst[J].Chemical Communications,2014,50(72):10386-10389.
    [18] CHIOU Y D,HSU Y J.Room-temperature synthesis of single-crystalline Se nanorods with remarkable photocatalytic properties[J].Applied Catalysis B:Environmental,2011,105(1/2):211-219.
    [19] LAU V W H,KLOSE D,KASAP H,et al.Dark photocatalysis:storage of solar energy in carbon nitride for time-delayed hydrogen generation[J].Angewandte Chemie International Edition,2017,56(2):510-514.
    [20] 张金水,王博,王心晨,等.氮化碳聚合物半导体光催化[J].化学进展,2016,26(1):19-29.
    [21] WANG C T,HUANG H H.Photo-chargeable titanium/vanadium oxide composites[J].Non-Crystalline Solids,2008,354(28):3336-3342.
    [22] YASOMANEE J P,BANDARA J.Multi-electron storage of photoenergy using Cu2O-TiO2 thin film photocatalyst[J].Solar Energy Materials and Solar Cells,2008,92(3):348-352.
    [23] NGUYEN C C,VU N O,DO T O.Efficient hollow double-shell photocatalysts for the degradation of organic pollutants under visible light and in darkness[J].Materials Chemistry A,2016,4(12):4413-4419.
    [24] ZHANG Q,WANG H,LI Z L,et al.Metal-free photocatalyst with visible-light-driven post-illumination catalytic memory[J].ACS Applied Materials & Interfaces,2017,9(26):21738-21746.
    [25] LI L N,LIU Z S,GUO L T,et al.NaBiO3/BiO2-x composite photocatalysts with post-illumination “memory” activity[J].Materials Letters,2018,234(1):30-34.
    [26] 李静,吉庆华,兰华春,等.ZnTiO3-TiO2复合光催化剂的制备及光催化降解有机污染物机制分析[J].环境科学,2019,40(2):693-700.
    [27] TAKAHASHI Y,TATSUMA T.Remote energy storage in Ni(OH)2 with TiO2 photocatalyst[J].Physical Chemistry Chemical Physics,2006,8(23):2716-2719.
    [28] LI J,LIU Y,ZHU Z J,et al.A full-sunlight-driven photocatalyst with super long-persistent energy storage ability[J].Scientific Reports,2013,3:2409.
    [29] LI Y T,ZHANG J M,LI H W,et al.Highly stable dispersibility in water induced by surface hydration force of TiO2 nanocrystalline mixtures during phase transformation[J].Dispersion Science and Technology,2010,31(2):260-263.
    [30] EL-SHESHTAWY H S,EL-HOSAINY H M,SHOUEIR K R,et al.Facile immobilization of Ag nanoparticles on g-C3N4/V2O5 surface for enhancement of post-illumination,catalytic,and photocatalytic activity removal of organic and inorganic pollutants[J].Applied Surface Science,2019,467/468:268-276.
    [31] ZHAO D,CHEN C C,YU C L,et al.Photoinduced electron storage in WO3/TiO2 nanohybrid material in the presence of oxygen and postirradiated reduction of heavy metal ions[J].Physical Chemistry C,2009,113(30):13160-13165.
    [32] XING Z,ZENG X K,DELETIC A,et al.Constructing ultrathin film with “memory” photocatalytic activity from monolayered tungstate nanodots[J].Chemical Communications,2016,52(43):6985-6988.
    [33] PARK S,KIM W,SELVARAJ R,et al.Spontaneous reduction of Cr(Ⅵ) using InSnS2 under dark condition[J].Chemical Engineering Journal,2017,321:97-104.
    [34] WANG G,XING Z,ZENG X K,et al.Ultrathin titanium oxide nanosheets films with memory bactericidal activity[J].Nanoscale,2016,8(42):18050-18056.
    [35] TATSUMA T,TAKEDA S,SAITOH S,et al.Bactericidal effect of an energy storage TiO2-WO3 photocatalyst in dark[J].Electrochemistry Communications,2003,5(9):793-796.
  • 加载中
计量
  • 文章访问数:  242
  • HTML全文浏览量:  28
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-26
  • 网络出版日期:  2022-03-30
  • 刊出日期:  2022-03-30

目录

    /

    返回文章
    返回