EFFECT OF SLURRY RECIRCULATION TIME ON ANAEROBIC DIGESTION OF KITCHEN WASTE WITH HIGH SOLID CONTENT
-
摘要: 研究了高温(55±2)℃下沼液回流时间(1,6,12,24 h/d)对厨余垃圾高含固(15%TS)厌氧发酵产氢的影响,并探讨了不同沼液回流时间下微生物群落的演替规律。结果表明:增加沼液回流时间可提高产氢量,缓解VFAs积累的抑制效应,回流时间为24 h/d时氢气累积产量最大,为111.44 L,VFAs浓度为28.34 g/L,比回流时间1 h/d时降低了15.40%。厨余垃圾厌氧发酵过程中延长回流时间可恢复酸化体系的pH,且未形成氨积累。回流时间较短(12 h/d)的S实验组中,随着发酵的进行,微生物群落结构多样性降低,在门水平上Firmicutes逐渐演替为优势菌(49.2%~89.5%),回流时间较长(24 h/d)的T实验组一直保持较高的微生物多样性,发酵结束时,Firmicutes、Chloroflexi、Proteobacteria、Euryarchaeota相对丰度分别为27.8%、33.6%、13.0%和12.3%;属水平上T实验组(24 h/d)的产氢菌相对丰度高于S实验组(12 h/d),发酵结束时产氢菌Clostridium和Thermoanaerobacterium的相对丰度分别为10.5%和3.2%。延长沼液回流时间可促进VFAs与葡萄糖代谢产氢。冗余分析表明,沼液回流时间和产气量主要与Firmicutes和Chloroflexi中菌属变化较明显相关。Abstract: The effect of slurry recirculation time(1 h/d, 6 h/d, 12 h/d and 24 h/d) on thermophilic((55±2) ℃) anaerobic digestion of kitchen waste for hydrogen production with high solid content(15%TS) was investigated in this study. The microbial community succession was studied in the condition of different slurry recirculation time. The results indicated that increasing the recirculation time of biogas slurry could improve the hydrogen production and alleviate VFAs accumulation. The maximum hydrogen production was obtained as 111.44 L at the recirculation time of 24 h/d. The concentration of VFAs was 28.34 g/L, 15.40% lower than that in the condition of 1 h/d. Increasing the recirculation time during anaerobic fermentation of kitchen waste could improve the pH of the acidification system, and the ammonia accumulation was not formed. In the experimental group with a shorter recirculation time(12 h/d), microbial community structural diversity decreased during the fermentation. At the phylum level, Firmicutes became the dominant bacteria(with a relative abundance of 49.2% to 89.5%). The experimental group maintained high microbial diversity at the condition of longer recirculation time, with the relative abundance of Firmicutes 27.8%, Chloroflexi 33.6%, Proteobacteria 13.0%, Euryarchaeota 12.3%. At the genus level, the group with longer recirculation time showed higher abundance of hydrogenogens, with the relative abundance of Clostridium 10.5% and Thermoanaerobacterium 3.2%. Extending slurry recirculation time could promote hydrogen production by metabolism of VFAs and glucose, and Proteiniphilum was the key microorganism for VFAs degradation. Redundancy analysis indicated that slurry recirculation time and biogas production were related to Firmicutes and Chloroflexi.
-
[1] YANG C J,YANG M D,YU Q.An analytical study on the resource recycling potentials of urban and rural domestic waste in China[J].Procedia Environmental Sciences,2012,16:25-33. [2] WAINAINA S,AWASTHI M K,HORVATH I S,et al.Anaerobic digestion of food waste to volatile fatty acids and hydrogen at high organic loading rates in immersed membrane bioreactors[J].Renewable Energy,2020,152:1140-1148. [3] 王雪,苑宏英,贾璇,等.纳米零价铁和零价铁对餐厨垃圾暗发酵制氢过程铁离子和酶活性的影响[J].环境工程学报,2020,14(5):1354-1364. [4] Zafiry D,李明凯,孔鑫,等.厨余垃圾厌氧产酸与产甲烷反应器运行特征差异分析[J].环境卫生工程,2020,28(2):63-69. [5] PASTOR-Poquet V,PAPIRIO S,TRABLY E,et al.High-solids anaerobic digestion requires a trade-off between total solids,inoculum-to-substrate ratio and ammonia inhibition[J].International Journal of Environmental Science and Technology,2019,16(11):7011-7024. [6] 付嫣然.利用沼液回流提升稻秸厌氧消化床传质与发酵性能研究[D].北京:中国农业科学院,2019. [7] KOBAYASHI T,XU K X,LI Y,et al.Effect of sludge recirculation on characteristics of hydrogen production in a two-stage hydrogen-methane fermentation process treating food wastes[J].International Journal of Hydrogen Energy,2012,37(7):5602-5611. [8] 蒋心茹,刘杨,谢炎东,等.回流液对剩余污泥厌氧消化的影响[J].应用与环境生物学报,2021(2):459-465. [9] 李慧莉,刘鹏程,陈志强,等.沼液回流对秸秆与污泥混合中温厌氧消化的影响[J].环境工程学报,2018,12(10):2959-2965. [10] 王耀华,朱洪光.厌氧发酵池搅拌强度控制及有效性预测研究[J].现代农业科技,2014(23):226-230,233. [11] KARIM K,HOFFMANN R,KLASSON K T,et al.Anaerobic digestion of animal waste:effect of mode of mixing[J].Water Research,2005,39(15):3597-3606. [12] 张倩倩,朱洪涛.聚乙烯和页岩陶粒对污泥厌氧发酵产酸的影响[J].环境科学学报,2020,40(9):3323-3330. [13] BOVIO-WINKLER P,CABEZAS A,ETCHEBEHERE C.Database mining to unravel the ecology of the phylum chloroflexi in methanogenic full scale bioreactors[J].Frontiers in Microbiology,2021,11. [14] ZHANG P,NI X J,GUO Y,et al.Proteomic-based identification of maternal proteins in mature mouse oocytes[J].BMC Genomics,2009,10. [15] 任南琪,郭婉茜,刘冰峰.生物制氢技术的发展及应用前景[J].哈尔滨工业大学学报,2010,42(6):855-863. [16] 杨琦,张亚雷,汪立忠,等.垃圾填埋场的厌氧降解作用及其微生物类群[J].中国沼气,1997(3):7-10. [17] 代元元,江皓,丁江涛,等.秸秆厌氧混合发酵的研究进展[J].中国沼气,2014,32(5):40-45. [18] 卢艳娟,尤宇嘉.沼液回流对厌氧沼气工程的影响[J].中国沼气,2015,33(3):66-68. [19] 曹先艳,赵由才,袁玉玉,等.氨氮对餐厨垃圾厌氧发酵产氢的影响[J].太阳能学报,2008,29(6):751-755. [20] ROJAS-SOSSA J P,ZHONG Y,VALENTI F,et al.Effects of ammonia fiber expansion (afex) treated corn stover on anaerobic microbes and corresponding digestion performance[J].Biomass and Bioenergy,2019,127(AUG.):105263.1-105263.10. [21] ARIESYADY H D,ITO T,OKABE S.Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester[J].Water Research,2007,41(7):1554-1568. [22] AMEL B-D,NAWEL B,KHELIFA B,et al.Characterization of a purified thermostable xylanase from caldicoprobacter algeriensis sp.nov.strain TH7C1T[J].Carbohydrate Research,2016,419:60-68. [23] ZIARA R M M,MILLER D N,SUBBIAH J,et al.Lactate wastewater dark fermentation:the effect of temperature and initial pH on biohydrogen production and microbial community[J].International Journal of Hydrogen Energy,2019,44(2):661-673. [24] 蔡友华.嗜热厌氧杆菌工程菌(Δldh)的构建及其廉价生物质乙醇发酵的研究[D].广州:华南理工大学,2011. [25] YAMADA T,SEKIGUCHI Y,IMACHI H,et al.Diversity,localization,and physiological properties of filamentous microbes belonging to chloroflexi subphylum Ⅰ in mesophilic and thermophilic methanogenic sludge granules[J].Applied and Environmental Microbiology,2005,71(11):7493-7503. [26] ZIGANSHIN A M,LIEBETRAU J,PRÖTER J,et al.Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials[J].Applied Microbiology and Biotech-nology,2013,97(11):5161-5174. [27] SANDER K,ASANO K G,BHANDARI D,et al.Targeted redox and energy cofactor metabolomics in clostridium thermocellum and thermoanaeroacterium saccharolyticum[J].Biotechnology for Biofuels,2017,10(1):270. [28] QIU Y L,HANADA S,KAMAGATA Y,et al.Lactivibrio alcoholicus gen.nov.,sp.nov.,an anaerobic,mesophilic,lactate-,alcohol-,carbohydrate-and amino-acid-degrading bacterium in the phylum synergistetes[J].International Journal of Systematic and Evolutionary Microbiology,2014,64(1):2137-2145. [29] 侯霞霞,来航线,韦小敏.青贮用乳酸菌的筛选及其生物学特性研究[J].西北农林科技大学学报(自然科学版),2015,43(1):183-192. [30] 任聪,辜杨,杜海,等.基于新老窖泥的微生物菌群结构判定浓香型白酒生产中的主体己酸菌[J].食品与发酵工业,2018,44(12):8-14. [31] HONDA T,FUJITA T,TONOUCHI A.Aminivibrio pyruvatiphilus gen.nov.sp.nov.an anaerobic,amino-acid-degrading bacterium from soil of a Japanese rice field[J].International Journal of Systematic and Evolutionary Microbiology,2013,63(10):3679-3686. [32] WANG Z F,MA T L,XING L Z.Process performance and microbial interaction in two-stage continuously stirred tank reactors for sludge anaerobic digestion operated at different temperatures[J].Biochemical Engineering Journal,2020,161:107682.
点击查看大图
计量
- 文章访问数: 151
- HTML全文浏览量: 37
- PDF下载量: 2
- 被引次数: 0