A REVIEW OF THE INFLUENCE FACTORS OF RADIONUCLIDES MIGRATION IN SOIL RHIZOSPHERE MICROREGIONS
-
摘要: 大部分放射性核素具有放射性强、半衰期长、毒性大等特点,进入土壤后受环境变化影响易发生迁移和形态转化等一系列反应,并且可通过食物链的迁移和积累最终危害人体健康。植物根际是放射性核素由土壤向植物体迁移的必经之路,土壤胶体是根际微区的主要组成物质也是吸附放射性核素的重要载体;根系分泌物是根际微区区别于土壤的重要物质;pH是影响放射性核素赋存形态、迁移重要的理化条件;根系微生物是根际微区中重要的调控者。总结了近5年影响放射性核素在根际微区迁移影响因素的研究进展,从土壤胶体、根系分泌物、pH、根系微生物4个方面综合阐述放射性核素在根际微区迁移和形态转化的影响因素,并提出展望。Abstract: Most radionuclides have characteristics of strong radioactivity, long half-life, and high toxicity. After entering the soil, they are prone to a series of reactions such as migration and morphological transformation under the influence of environmental changes. The nuclides entering the soil could be passively absorbed by plants and ultimately harmed through the food chain to human health. Plant rhizosphere is the only way for radionuclides to migrate from soil to plant. Soil colloids are the main constituents of rhizosphere microregions and important carriers for the adsorption of radionuclides. The root exudate is the most important difference between the rhizosphere and the soil. And pH is an important physical and chemical condition for the occurrence and migration of radionuclides. Root microorganisms are regulators in the rhizosphere microregions. This article summarized the research progress of radionuclides migration in rhizosphere microregions in recent five years, from soil colloids, root exudates, pH, root microorganisms, comprehensively expounded the environmental impact of nuclide migration in the rhizosphere microregions, and put forward the prospects for the related researches in the future.
-
Key words:
- radionuclide /
- rhizosphere microregions /
- morphology /
- migration /
- soil colloids
-
[1] BOYER A,NING P,KILLEY D,et al.Strontium adsorption and desorption in wetlands:role of organic matter functional groups and environmental implications[J].Water Research,2018,133:27-36. [2] BURGER A,LICHTSCHEIDL I.Stable and radioactive cesium:a review about distribution in the environment,uptake and translocation in plants,plant reactions and plants’ potential for bioremediation[J].Science of the Total Environment,2018,618:1459-1485. [3] DIDONATO N,XU C,SANTSCHI P H,et al.Substructural components of organic colloids from a Pu-polluted soil with implications for Pu mobilization[J].Environmental Science & Technology,2017,51(9):4803-4811. [4] HU Q H,WENG J Q,WANG J S.Sources of anthropogenic radionuclides in the environment:a review[J].Journal of Environmental Radioactivity,2010,101(6):426-437. [5] CHEFTEL J C.Emerging risks related to food technology[J].Advances in Food Protection:Focus on Food Safety and Defense,2011:223-254. [6] KUCHINSKAYA O.Twice invisible:formal representations of radiation danger[J].Social Studies of Science,2013,43(1):78-96. [7] KYNE D,BOLIN B.Emerging environmental justice issues in nuclear power and radioactive contamination[J].International Journal of Environmental Research and Public Health,2016,13(7):700. [8] 刘媛媛,魏强林,高柏,等.放射性核素在不同介质中的迁移规律研究现状及进展[J].有色金属(冶炼部分),2018(6):76-82. [9] THAKUR P,BALLARD S,NELSON R.An overview of Fukushima radionuclides measured in the northern hemisphere[J].Science of the Total Environment,2013,458:577-613. [10] SHIMURA H,ITOH K,SUGIYAMA A,et al.Absorption of radionuclides from the fukushima nuclear accident by a novel algal strain[J].PloS One,2012,7(9):e44200. [11] BABA M.Fukushima accident:what happened[J].Radiation Measurements,2013,55:17-21. [12] ALIYU A S,EVANGELIOU N,MOUSSEAU T A,et al.An overview of current knowledge concerning the health and environmental consequences of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident[J].Environment International,2015,85:213-228. [13] 孙菲.核辐射阴霾仍旧笼罩福岛[J].生态经济,2017,33(5):2-5. [14] MOYEN C,ROBLIN G.Uptake and translocation of strontium in hydroponically grown maize plants,and subsequent effects on tissue ion content,growth and chlorophyll a/b ratio:comparison with Ca effects[J].Environmental and Experimental Botany,2010,68(3):247-257. [15] 旷远文,温达志,周国逸.有机物及重金属植物修复研究进展[J].生态学杂志,2004,23(1):90-96. [16] 张太平,潘伟斌.根际环境与土壤污染的植物修复研究进展[J].生态环境,2003,12(1):76-80. [17] CUI J T,LI Y A,WANG C Y,et al.Characteristics of the rhizosphere bacterial community across different cultivation years in saline-alkaline paddy soils of Songnen Plain of China[J].Canadian Journal of Microbiology,2018,64(12):925-936. [18] 程凯凯,唐海明,李超,等.农田根际土壤微生物多样性研究进展[J].作物研究,2020,34(2):190-195. [19] WATTENBURGER C J,GUTKNECHT J,ZHANG Q,et al.The rhizosphere and cropping system,but not arbuscular mycorrhizae,affect ammonia oxidizing archaea and bacteria abundances in two agricultural soils[J].Applied Soil Ecology,2020,151:103540. [20] 文倩,关欣.土壤团聚体形成的研究进展[J].干旱区研究,2004,21(4):434-438. [21] 杨士,卢陈彬,刘祖文,等.土壤胶体对重金属迁移及生物有效性影响的研究进展[J].环境污染与防治,2019,41(8):974-978. [22] WANG C Z,WANG R Y,HUO Z L,et al.Colloid transport through soil and other porous media under transient flow conditions:a review[J].Wiley Interdisciplinary Reviews-Water,2020,7(4). [23] LEAD J R,WILKINSON K J.Aquatic colloids and nanoparticles:current knowledge and future trends[J].Environmental Chemistry,2006,3(3):159-171. [24] 窦森,Yves Tardy,张晋京,等.土壤HA、FA形成转化驱动因素初步研究[A].中国土壤学会.中国土壤学会第十一届全国会员代表大会暨第七届海峡两岸土壤肥料学术交流研讨会论文集(上)[C].中国土壤学会:中国土壤学会,2008:8. [25] IBRAEVA Z E,ZHUMALY A A,BLAGIH E,et al.Preparation and characterization of organic-inorganic composite materials based on poly(acrylamide) hydrogels and clay minerals[J].Macromolecular Symposia,2015,351(1):97-111. [26] 陈曼丽.重金属在表层土壤中迁移特性研究[D].郑州:郑州大学,2019. [27] ZHAO L,SHANGGUAN Y X,YAO N,et al.Soil migration of antimony and arsenic facilitated by colloids in lysimeter studies[J].Science of the Total Environment,2020,728:138874. [28] WANG X K,CHEN Y X,WU Y C.Diffusion of Eu(Ⅲ) in compacted bentonite-effect of pH,solution concentration and humic acid[J].Applied Radiation and Isotopes,2004,60(6):963-969. [29] LIU D X,ZUO R,JIVKOV A P,et al.Effect of colloids on non-Fickian transport of strontium in sediments elucidated by continuous-time random walk analysis[J].Environmental Pollution,2019,252:1491-1499. [30] WU M M,MO L M,BI E P.Effects of fulvic acid and montmorillonite colloids at different concentrations on Cd(Ⅱ) sorption onto nano-hydroxyapatite[J].Chemosphere,2020,248:125992. [31] WON J,WIRTH X,BURNS S E.An experimental study of cotransport of heavy metals with kaolinite colloids[J].Journal of Hazardous Materials,2019,373:476-482. [32] TRAN E L,TEUTSCH N,KLEIN-BENDAVID O,et al.Uranium and Cesium sorption to bentonite colloids under carbonate-rich environments:implications for radionuclide transport[J].Science of the Total Environment,2018,643:260-269. [33] 李花粉.根际重金属污染[J].中国农业科技导报,2000(4):54-59. [34] LEE S,KO I W,YOON I H,et al.Colloid mobilization and heavy metal transport in the sampling of soil solution from Duckum soil in South Korea[J].Environmental Geochemistry and Health,2019,41(1):469-480. [35] LIU Y T,XU Z,HU X,et al.Sorption of Pb(Ⅱ) and Cu(Ⅱ) on the colloid of black soil,red soil and fine powder kaolinite:effects of pH,ionic strength and organic matter[J].Environmental Pollutants and Bioavailability,2019,31(1):85-93. [36] FU H Y,DING D X,SUI Y,et al.Transport of uranium(Ⅵ) in red soil in South China:influence of initial pH and carbonate concentration[J].Environmental Science and Pollution Research,2019,26(36):37125-37136. [37] SEN T K,MAHAJAN S P,KHILAR K C.Adsorption of Cu2+ and Ni2+ on iron oxide and kaolin and its importance on Ni2+ transport in porous media[J].Colloids and Surfaces a-Physicochemical and Engineering Aspects,2002,211(1):91-102. [38] FAN Y R,ZHENG C L,LIV H X,et al.Effect of pH on the adsorption of arsenic(Ⅴ) and antimony(Ⅴ) by the black Checksoil in three systems:performance and mechanism[J].Ecotoxicology and Environmental Safety,2020,191:110145. [39] MISHRA S,MAITY S,BHALKE S,et al.Thermodynamic and kinetic investigations of uranium adsorption on soil[J].Journal of Radioanalytical and Nuclear Chemistry,2012,294(1):97-102. [40] YANG J Y,LUO H Q,ZHU Y Y,et al.Adsorption-desorption and co-migration of vanadium on colloidal kaolinite[J].Environmental Science and Pollution Research,2020,27(15):17910-17922. [41] 高子勤,张淑香.连作障碍与根际微生态研究 Ⅰ.根系分泌物及其生态效应[J].应用生态学报,1998,9(5):102-107. [42] MA J F,RYAN P R,DELHAIZE E.Aluminium tolerance in plants and the complexing role of organic acids[J].Trends in Plant Science,2001,6(6):273-278. [43] CHEN Y P,YANG Z P,ZHANG Q X,et al.Effect of tartaric acid on the adsorption of Pb (Ⅱ) via humin:kinetics and mechanism[J].Journal of the Taiwan Institute of Chemical Engineers,2020,107:79-88. [44] 邹金城,龚玉莲,陈丽红,等.根系分泌物对蕹菜Cd吸收积累的影响[J].广东农业科学,2019,46(5):60-66. [45] 葛艺,徐绍辉,徐艳.根际微生物组构建的影响因素研究进展[J].浙江农业学报,2019,31(12):2120-2130. [46] 袁仁文,刘琳,张蕊,等.植物根际分泌物与土壤微生物互作关系的机制研究进展[J].中国农学通报2020,36(2):26-35. [47] 朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述[J].生态环境,2003,12(1):102-105. [48] 劳昌玲,罗立强,沈亚婷,等.微生物与重金属相互作用过程与机制研究进展[J].环境科学研究2020,33(8):1929-1937. [49] HUANG Q Y,CHEN W L,XU L H.Adsorption of copper and cadmium by Cu-and Cd-resistant bacteria and their composites with soil colloids and kaolinite[J].Geomicrobiology Journal,2005,22(5):227-236. [50] OHNUKI T,KOZAI N,SAKAMOTO F,et al.Association of actinides with microorganisms and clay:implications for radionuclide migration from waste-repository sites[J].Geomicrobiology Journal,2010,27(3):225-230. [51] SMITH S L,BOOTHMAN C,WILLIAMS H A,et al.Microbial impacts on Tc-99m migration through sandstone under highly alkaline conditions relevant to radioactive waste disposal[J].Science of the Total Environment,2017,575:485-495. [52] RENSHAW J C,LAW N,GEISSLER A,et al.Impact of the Fe(Ⅲ)-reducing bacteria Geobacter sulfurreducens and Shewanella oneidensis on the speciation of plutonium[J].Biogeochemistry,2009,94(2):191-196.
点击查看大图
计量
- 文章访问数: 134
- HTML全文浏览量: 18
- PDF下载量: 3
- 被引次数: 0