中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

腐植酸对李氏禾-红壤处理系统中铬赋存形态、微生物群落及酶活性的影响

郭越宏 王建生 张学洪 张杏锋 高波

郭越宏, 王建生, 张学洪, 张杏锋, 高波. 腐植酸对李氏禾-红壤处理系统中铬赋存形态、微生物群落及酶活性的影响[J]. 环境工程, 2021, 39(12): 234-242. doi: 10.13205/j.hjgc.202112035
引用本文: 郭越宏, 王建生, 张学洪, 张杏锋, 高波. 腐植酸对李氏禾-红壤处理系统中铬赋存形态、微生物群落及酶活性的影响[J]. 环境工程, 2021, 39(12): 234-242. doi: 10.13205/j.hjgc.202112035
GUO Yue-hong, WANG Jian-sheng, ZHANG Xue-hong, ZHANG Xing-feng, GAO Bo. EFFECTS OF HUMIC ACID ON CHROMIUM SPECIATION, MICROBIAL COMMUNITIES AND ENZYME ACTIVITIES IN RED SOIL TREATMENT SYSTEM PLANTED WITH LEERSIA HEXANDRA SWARTZ[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 234-242. doi: 10.13205/j.hjgc.202112035
Citation: GUO Yue-hong, WANG Jian-sheng, ZHANG Xue-hong, ZHANG Xing-feng, GAO Bo. EFFECTS OF HUMIC ACID ON CHROMIUM SPECIATION, MICROBIAL COMMUNITIES AND ENZYME ACTIVITIES IN RED SOIL TREATMENT SYSTEM PLANTED WITH LEERSIA HEXANDRA SWARTZ[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 234-242. doi: 10.13205/j.hjgc.202112035

腐植酸对李氏禾-红壤处理系统中铬赋存形态、微生物群落及酶活性的影响

doi: 10.13205/j.hjgc.202112035
基金项目: 

广西科技重大专项(桂科AA17204047)

广西自然科学基金(2018GXNSFAA138045)

国家重点研发计划项目(2016YFD0800800)

广西高等学校高水平创新团队及卓越学者计划项目(桂财教函[2018]319号)

广西矿冶与环境科学实验中心(KH2012ZD004)。

详细信息
    作者简介:

    郭越宏(1996-),女,硕士研究生,主要研究方向为重金属废水治理。gyh0258@foxmail.com

    通讯作者:

    张杏锋(1982-),女,博士,研究员,主要研究方向为环境污染治理。zhangxf@glut.edu.cn

EFFECTS OF HUMIC ACID ON CHROMIUM SPECIATION, MICROBIAL COMMUNITIES AND ENZYME ACTIVITIES IN RED SOIL TREATMENT SYSTEM PLANTED WITH LEERSIA HEXANDRA SWARTZ

  • 摘要: 研究了不施加和施加10g/kg腐植酸后,李氏禾(Leersia hexandra Swartz)-红壤处理系统中基质和李氏禾体内铬赋存形态、微生物群落数量及酶活性的变化。结果表明:施加腐植酸后,基质中以残渣态铬为主;李氏禾茎叶中以残渣态铬为主,根中则以盐酸提取态铬为主。腐植酸能显著促进细菌、真菌和放线菌生长繁殖,3大菌群数量最大值分别为6.76×107,4.48×107,7.71×107CFU/g。酶活性分析表明,施加腐植酸有利于提高蔗糖酶、碱性磷酸酶活性,降低过氧化氢酶和多酚氧化酶酶活性。相关性分析表明,多酚氧化酶和过氧化氢酶活性均与细菌数量和腐植酸浓度呈负相关,细菌、真菌和放线菌数量与腐植酸浓度呈正相关。3大菌群数量均与基质残渣态铬含量呈正相关。蔗糖酶与基质和李氏禾体内铬形态含量均呈负相关;多酚氧化酶活性与李氏禾体内大部分铬形态含量呈正相关。
  • [1] DHAL B,THATOI H N,DAS N N,et al.Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste:a review[J].Journal of Hazardous Materials,2013,250/251:272-291.
    [2] GUPTA V K,AGARWALAND S,TAWFIK A S.Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes[J].Water Research,2011,45(6):2207-2212.
    [3] MATERN K,KLETTI H,MANSFELDT T.Chemical and mineralogical characterization of chromite ore processing residue from two recent Indian disposal sites[J].Chemosphere,2016,155:188-195.
    [4] DING W,STEWART D I,HUMPHREYS P N,et al.Role of an organic carbon-rich soil and Fe(Ⅲ) reduction in reducing the toxicity and environmental mobility of chromium(Ⅵ) at a COPR disposal site[J].Science of the Total Environment,2016,541:1191-1199.
    [5] ASHRAF A,BIBI I,NIAZI N K,et al.Chromium(Ⅵ) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions[J].International Journal of Phytoremediation,2017,19(7):605-613.
    [6] USHARANI B,VASUDEVAN N.Impact of heavy metal toxicity and constructed wetland system as a tool in remediation[J].Archives of Environmental & Occupational Health,2016,71(2):102-110.
    [7] PAPAEVANGELOU V A,GIKAS G D,TSIHRINTZIS V A.Chromium removal from wastewater using HSF and VF pilot-scale constructed wetlands:overall performance,and fate and distribution of this element within the wetland environment[J].Chemosphere,2017,168:716-730.
    [8] LIU J,ZHANG X H,YOU S H,et al.Cr(Ⅵ) removal and detoxification in constructed wetlands planted with Leersia hexandra Swartz[J].Ecological Engineering,2014,71:36-40.
    [9] 伍清新,刘杰,靳振江,等.李氏禾人工湿地净化Cr(Ⅵ)污染水体的性能研究[J].环境工程学报,2014,8(2):536-540.
    [10] 卜永辉,刘杰,游少鸿,等.六种基质的李氏禾湿地系统对Cr(Ⅵ)净化效果的差异[J].工业安全与环保,2017,43(4):64-67

    ,106.
    [11] 邹德乙.腐植酸的概念与腐植酸分类问题的探讨[J].腐植酸,2011(4):44-48.
    [12] KOSTIC I S,ANDJELKOVIC T D,NIKOLIC R S,et al.Comparative study of binding strengths of heavy metals with humic acid[J].Hemijska Industrija,2013,67(5):773-779.
    [13] 申静秀,顾闽,范梦婕,等.腐植酸在环境治理中的研究及应用进展[J].现代化工,2020,41(1):30-33.
    [14] 李威,邹立壮,朱书全,等.近十年腐植酸应用研究综述[J].腐植酸,2006(3):3-8.
    [15] ZHANG Y,YANG X,ZHANG S,et al.The influence of humic acids on the accumulation of lead (Pb) and cadmium (Cd) in tobacco leaves grown in different soils[J].Journal of Soil Science and Plant Nutrition,2013,13(1):43-53.
    [16] EL-ESWED B,KHALILI F.Adsorption of Cu(Ⅱ) and Ni(Ⅱ) on solid humic acid from the Azraq area,Jordan[J].Journal of Colloid Interface Science,2006,299(2):497-503.
    [17] D’AMORE J J,AL-ABED S R,SCHECKEL K G,et al.Methods for Speciation of Metals in Soils[J].Journal of Environmental Quality,2005,34(5):1707-1745.
    [18] DEGRYSE F,SMOLDERSAND E,PARKER D R.Partitioning of metals (Cd,Co,Cu,Ni,Pb,Zn) in soils:concepts,methodologies,prediction and applications:a review[J].European Journal of Soil Science,2009,60(4):590-612.
    [19] 王丹,魏威,梁东丽,等.土壤铜、铬(Ⅵ)复合污染重金属形态转化及其对生物有效性的影响[J].环境科学,2011,32(10):3113-3120.
    [20] WEIS J S,GLOVER T,WEIS P.Interactions of metals affect their distribution in tissues of Phragmites australis[J].Environmental Pollution,2004,131(3):409-415.
    [21] 于皓,安益君,金德才,等.铬污染对土壤细菌群落结构及其构建机制的影响[J].环境科学,2020,42(3):1197-1204.
    [22] CHUNG H,KIM M J,KO K,et al.Effects of graphene oxides on soil enzyme activity and microbial biomass[J].Science of the Total Environment,2015,514:307-313.
    [23] 葛艺,徐明明,徐邵辉,等.铜胁迫对小麦根系微域微生物群落的影响[J].环境科学,2020,42(2):996-1003.
    [24] DENG L J,ZENG G M,FAN C Z,et al.Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil[J].Applied Microbiology Biotechnology,2015,99(19):8259-8269.
    [25] ZHANG Y J,OU J L,DUAN Z K,et al.Adsorption of Cr(Ⅵ) on bamboo bark-based activated carbon in the absence and presence of humic acid[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2015,481:108-116.
    [26] 武瑞平,薛金辉,王莹.腐殖酸对铅污染土壤理化性质的影响[J].环境科学导刊,2018,37(2):56-61.
    [27] GONZALEZ M L,BLANC D,BRAUER de C.Multi-analytical approach and geochemical modeling for mineral trace element speciation in MSWI bottom-ash[J].Waste and Biomass Valorization,2017,10(3):547-560.
    [28] 林先贵,王一明.腐植酸类物质是土壤健康的重要保障[J].腐植酸,2010,2:1-10.
    [29] ZHU Y,ZENG G M,ZHANG P Y,et al.Feasibility of bioleaching combined with Fenton-like reaction to remove heavy metals from sewage sludge[J].Bioresource Technology,2013,142:530-534.
    [30] ZHAO T T,GE W Z,NIE Y X,et al.Highly efficient detoxification of Cr(Ⅵ) by brown coal and kerogen:process and structure studies[J].Fuel Processing Technology,2016,150:71-77.
    [31] HSU N H,WANG S L,LIN Y C.Reduction of Cr(Ⅵ) by crop-residue-derived black carbon[J].Environmental Science and Technology,2009,43(23):8801-8806.
    [32] 张杏锋,田超,高波.能源植物皇草对重金属的耐性及修复潜力[J].环境工程学报,2017,11(5):3204-3213.
    [33] 周桑扬,杨凯,吴晓芙,等.人工湿地植物去除废水中重金属的作用机制研究进展[J].湿地科学,2016,14(5):717-724.
    [34] TAN L Q,WANG X X,TAN X L,et al.Bonding properties of humic acid with attapulgite and its influence on U(Ⅵ) sorption[J].Chemical Geology,2017,464:91-100.
    [35] LI Y,YUE Q Y,GAO B Y,et al.Adsorption thermodynamic and kinetic studies of dissolved chromium onto humic acids[J].Colloids Surfaces B:Biointerfaces,2008,65(1):25-29.
    [36] SANTOSA S J,SISWANTA D,SUDIONO S,et al.Synthesis and utilization of chitin-humic acid hybrid as sorbent for Cr(Ⅲ)[J].Surface Science,2007,601(22):5148-5154.
    [37] JIANG W J,CAI Q,XU W,et al.Cr(Ⅵ) adsorption and reduction by humic acid coated on magnetite[J].Environmental Science and Technology,2014,48(14):8078-8085.
    [38] 靳振江,刘杰,肖瑜,等.处理重金属废水人工湿地中微生物群落结构和酶活性变化[J].环境科学,2011,32(4):1202-1209.
    [39] 陈素华,孙铁珩,周启星,等.微生物与重金属间的相互作用及其应用研究[J].应用生态学报,2002,13(2):239-242.
    [40] 杨良静,何俊瑜,任艳芳,等.Cd胁迫对水稻根际土壤酶活和微生物的影响[J].贵州农业科学,2009,37(3):85-88.
    [41] 张建林,陆欣,王申贵.有机物料配比施用对土壤碱性磷酸酶活性的影响[J].土壤通报,2001,32(2):75-79.
    [42] 蔡少华.土壤Cr(Ⅵ)与土壤生化活性关系研究.陕西:西北农林科技大学,2008.
    [43] TRASAR-CEPEDA C,GIL-SOTRES F,LEIROS M C.Thermodynamic parameters of enzymes in grassland soils from Galicia,NW Spain[J].Soil Biology and Biochemistry,2007,39(1):311-319.
    [44] 闫峰,吴雄平,梁东丽,等.外源重金属Cr、Cu、Se和Zn对土娄土酶活性的影响[J].西北农林科技大学学报(自然科学版),2008,36(7):91-98.
    [45] STPNIEWSKA Z,WOLINSKA A,ZIOMEK J.Response of soil catalase activity to chromium contamination[J].Journal of Environmental Sciences,2009,21(8):1142-1147.
    [46] 郝建朝,吴沿友,连宾,等.土壤多酚氧化酶性质研究及意义[J].土壤通报,2006,37(3):470-474.
    [47] 陈光升,钟章成,齐代华.缙云山常绿阔叶林土壤酶活性与土壤肥力的关系[J].四川师范学院学报(自然科学版),2002,23(1):19-23.
    [48] 关荫松.土壤酶及其研究法[M].北京:农业出版社,1986.
    [49] 韩春梅,王林山,巩宗强,等.土壤中重金属形态分析及其环境学意义[J].生态学杂志,2005,24(12):1499-1502.
    [50] 李鱼,万晓宇,王晓丽.沉积物内源与外源重金属形态与酶活性的相关性[J].环境科学与技术,2010,33(4):10-14.
    [51] 章智明,黄占斌,单瑞娟.腐植酸对土壤改良作用探讨[J].环境与可持续发展,2013,38(3):109-111.
    [52] 梁艳茹,和文祥,邢少峰,等.不同价态铬对土壤碱性磷酸酶活性的影响[J].西北农林科技大学学报(自然科学版),2010,38(5):156-160,166.
  • 加载中
计量
  • 文章访问数:  126
  • HTML全文浏览量:  26
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-27
  • 网络出版日期:  2022-03-30
  • 刊出日期:  2022-03-30

目录

    /

    返回文章
    返回