PERMEABILITY CHARACTERISTICS TEST ON WASTEWATER IN UNPLANTED BIORETENTION CELL UNDER CONTINUOUS OPERATION
-
摘要: 为探究连续运行条件下生物滞留系统处理污水时的渗流特性,通过对不同水力负荷条件下系统渗透系数及孔隙率变化的监测考察其性能。结果显示:同一水力负荷下,随着运行时间推进,标准渗透系数K20呈先降低再升高最后达到稳定阶段(15 d左右)的变化趋势,而且水力负荷越大对相对渗透系数的影响越大,二者关系达到显著负相关水平(P<0.01)。在低水力负荷[<1.0 m3/(m2·d)]条件下,渗透系数与孔隙率呈正相关,在较高水力负荷[>2.0 m3/(m2·d)]条件下,渗透系数与孔隙率无显著相关性。在连续运行过程中,生物滞留系统处理污水时水力负荷应控制在2.0 m3/(m2·d)以内,且水力负荷为1.0 m3/(m2·d)时系统性能最佳。该研究成果可为有效预防生物滞留系统填料堵塞提供理论参考和借鉴。Abstract: To explore the permeability of the bioretention cell during sewage treatment under continuous operation, the system performance was investigated by monitoring the changes of the permeability coefficient and porosity under different hydraulic load conditions. The results showed that under the same hydraulic load, the standard permeability coefficient, K20 showed a trend of first decreasing, then increasing, and finally reaching a stable stage(on about the 15 th day). The greater the hydraulic load, the greater its impact on the relative permeability coefficient. The relationship between two parameters reached a significant negative correlation level(P<0.01). Under the condition of low hydraulic load [less than 1.0 m3/(m2·d)], the permeability coefficient was positively correlated with porosity. Under the condition of higher hydraulic load [more than 2.0 m3/(m2·d)], the permeability coefficient and porosity had no significant correlation. The hydraulic load of the BRC should be controlled lower than 2.0 m3/(m2·d), when the sewage was processed under continuous operation, and the system performance was best when the hydraulic load was 1.0 m3/(m2·d). This study could provide theoretical guidance for effectively preventing BRC clogging.
-
Key words:
- bioretention cell /
- clogging /
- hydraulic loading /
- permeability coefficient /
- porosity
-
[1] 李迪,陈垚,吕波.生物滞留系统对溶解性污染物的去除特性及优化途径[J].环境工程,2020,38(10):120-127. [2] DAVIS A P,HUNT W F,TRAVER R G,et al.Bioretention Technology:overview of current practice and future needs[J].Journal of Environmental Engineering,2009,135(3):109-117. [3] RAJA S R,LEWIS M,OSTENDORF B.Stormwater quality improvement potential of an urbanised catchment using water sensitive retrofits into public parks[J].Urban Forestry & Urban Greening,2014,13(2):315-324. [4] LEE J,GIL K.Evaluating bioretention hydrology and nutrient removal for restoring wetland function at artificial rainfall[J].Ecological Engineering,2020,150:105823. [5] 许萍,何俊超,张建强,等.生物滞留强化脱氮除磷技术研究进展[J].环境工程,2015,33(11):21-25,30. [6] LUCKE T,NICHOLS P W B.The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation[J].Science of the Total Environment,2015,536(12):784-792. [7] DAVIS A P,STAGGE J H,JAMIL E,et al.Hydraulic performance of grass swales for managing highway runoff[J].Water Research,2012,46(20):6775-6786. [8] LEE J Y,MOON H J,KIM T I,et al.Quantitative analysis on the urban flood mitigation effect by the extensive green roof system[J].Environmental Pollution,2013,181(10):257-261. [9] 许妍,席慕华,耿冲冲,等.无植物生物滞留池去除生活污水中典型抗生素及其效能强化[J].东南大学学报(自然科学版),2020,50(4):748-759. [10] 潘珉,李滨,冯慕华,等.潜流式人工湿地基质堵塞问题对策研究[J].环境工程学报,2011,5(5):1015-1020. [11] 孟莹莹,王会肖,张书函,等.基于生物滞留的城市道路雨水滞蓄净化效果试验研究[J].北京师范大学学报(自然科学版),2013,49(增刊1):286-291. [12] 王亚军.生物过滤系统中多级混合颗粒群渗流过程分析与完善[J].水土保持通报,2017,37(3):329-333. [13] 张宏胜.植物对雨水生物滞留池中氮磷去除及微生物多样性的影响[D].南京:南京信息工程大学,2019. [14] GONZALEZ-MERCHAN,BARRAUD S,LE C,et al.Monitoring of clogging evolution in the stormwater infiltration system and determinant factors[J].Revue Fran§aise De Gnie Civil,2012,16(1):s34-s47. [15] DAGENAIS D,BRISSON J,FLETCHER T D.The role of plants in bioretention systems:does the science underpin current guidance?[J].Ecological Engineering,2018,120:532-545. [16] HATT B E,MORISON P,FIETCHER T D,et al.Stormwater biofiltration systems-adoption guidelines[C]//Image & Signal Processing-international Conference,DBLP,2009. [17] TAYLOR S W,JAFFE P R.Enhanced in-situ biodegradation and aquifer permeability reduction[J].Journal of Environmental Engineering,1991,117(1):25-46. [18] 潘仪凯,张海江,张旭伟,等.复杂型生物滞留设施的渗透性能试验研究[J].中国给水排水,2018,34(23):134-138. [19] 许巧玲,崔理华,张玲.负荷因素对垂直流人工湿地土壤堵塞的影响[J].环境科学与技术,2014,37(增刊1):1-5. [20] PLATZER C,MAUCH K.Soil clogging in vertical flow reed beds-Mechanisms,parameters,consequences and.solutions?[J].Water Science & Technology,1997,35(5):175-181. [21] 李曼,华国芬,姬雨雨.垂直流人工湿地堵塞和轮休过程中水流变化规律[J].水处理技术,2017,43(1):57-61. [22] PINTELON T R R,PICIORANU C,LOOSDRECHT M C M V,et al.The effect of biofilm permeability on bio-clogging of porous media[J].Biotechnology and Bioengineering,2012,109(4):1031-1042. [23] ZHONG X Q,WU Y Q,XU Z G.Bio-clogging in porous media under discontinuous flow condition[J].Water,Air, & Soil Pollution,2013,224(5):1543. [24] 王振,张彬彬,向衡,等.垂直潜流人工湿地堵塞及其运行效果影响研究[J].中国环境科学,2015,35(8):2494-2502. [25] 于搏海.人工湿地的堵塞规律研究及机理探讨[D].杭州:浙江大学,2016. [26] BRATIERES K,FLETCHER T D,DELETIC A,et al.Nutrient and sediment removal by stormwater biofilters:a large-scale design optimisation study[J].Water Research,2008,42(14):3930-3940. [27] 苏立君,张宜健,王铁行.不同粒径级砂土渗透特性试验研究[J].岩土力学,2014,35(5):1289-1294.
点击查看大图
计量
- 文章访问数: 169
- HTML全文浏览量: 23
- PDF下载量: 3
- 被引次数: 0