SPATIAL DISTRIBUTION AND RISK ASSESSMENT OF TUNGSTEN POLLUTION OF SOIL IN A SMELTING SITE
-
摘要: 针对土壤中新兴污染物钨(W)关注度较低的现状,以河南洛阳某钨冶炼场地的土壤为研究对象,运用空间插值、单因子指数、内梅罗指数、潜在生态风险指数等方法,探讨了土壤中钨空间分布特征及潜在生态风险。结果表明:样点S10、S05、S06区域土壤钨含量在整体水平上较其他功能区高;Ⅰ、Ⅱ土壤层钨富集程度整体上远高于Ⅲ、Ⅳ层;随着剖面土壤深度增加,S01、S02、S04、S08、S10、S12区域钨呈深层富集,S05、S06、S07、S11呈表层富集,S03、S09呈中层富集;除S01、S12区域部分表中层土壤钨Pi值为轻微、轻度污染外,各区域土壤钨Pi值均为中度以上污染水平;各层土壤钨的综合PN值表明场地各土层整体上均受到钨的重度污染;除S05区域表层土壤钨Ei值为中度生态风险以外,各区域土壤钨Ei值均为轻度生态风险;各层土壤钨的综合RI值表明,Ⅰ、Ⅱ层为中度生态风险,Ⅲ、Ⅳ层为轻度生态风险。Abstract: Due to the less attention to the emerging pollutant tungsten in soil, this study focused on the soil of a tungsten smelting site in Luoyang, Henan province, and used the methods of spatial interpolation, single factor index, Nemerow index and potential ecological risk index to emphatically discuss the spatial distribution characteristics and potential ecological risk of tungsten in soil. The results showed that the soil tungsten contents in S10, S05 and S06 were higher than that in other functional areas; the enrichment degree of tungsten in soil layers Ⅰ and Ⅱ was much higher than that in soil layers Ⅲ and IV; with the increasing of soil depth, the areas of S01, S02, S04, S08, S10 and S12 reflected deep enriching tungsten, while S05, S06, S07 and S11 showed an surface enriching, and S03 and S09 showed an middle enriching; except for S01 and S12, the Pi of tungsten in surface and middle layer soil were minor and mild, the Pi of tungsten in the other areas of the site reached medium level; the tungsten composite indexes(PN) of each soil layer showed that the whole soil layer was heavily polluted by tungsten; except for the surface soil tungsten in S05 area, the soil tungsten(Ei) in the other areas of the site was with a mild ecological risk; the comprehensive potential ecological risk(RI) of soil tungsten in each layer showed that the ecological risks of soil tungsten in Ⅰ and Ⅱ layers were moderate, and those in Ⅲ and IV layers were mild.
-
Key words:
- smelting site /
- soil /
- tungsten /
- spatial distribution /
- ecological risk
-
[1] 杜辉辉,刘新,李杨,等.土壤中钨的环境行为与潜在风险:研究进展与展望[J/OL].http://kns.cnki.net/kcms/detail/32.1119.P.20210207.1059.002.html.2021-05-13. [2] 王素芳,贺铭.我国土壤中钼、钨的环境背景值及分布规律[J].土壤通报,1991(6):252-253. [3] KOUTSOSPYROS A,BRAIDA W,CHRISTODOULATOS C,et al.A review of tungsten:from environmental obscurity to scrutiny[J].Journal of Hazardous Materials,2006,136(1):1-19. [4] CLAUSEN J L,KORTE N.Environmental fate of tungsten from military use[J].The Science of the Total Environment,2009,407(8):2887-2893. [5] DATTA S,VERO S E,HETTIARACHCHI G M,et al.Tungsten contamination of soils and sediments:current state of science[J].Current Pollution Reports,2017,3(1):55-64. [6] WILSON B,PYATT F B.Bio-availability of tungsten in the vicinity of an abandoned mine in the English Lake District and some potential health implications[J].The Science of the Total Environment,2006,370(2/3):401-408. [7] SHEPPARD P R,SPEAKMAN R J,RIDENOUR G,et al.Temporal variability of tungsten and cobalt in fallon,Nevada[J].Environmental Health Perspectives,2007,115(5):715-719. [8] STRIGUL N,KOUTSOSPYROS A,ARIENTI P,et al.Effects of tungsten on environmental systems[J].Chemosphere,2005,61(2):248-258. [9] 董志询,陈素华,李中浤.江西某废弃钨冶炼厂场地土壤重金属污染特征与风险评价[J].南昌航空大学学报(自然科学版),2019,33(3):105-110. [10] 刘静静.西南地区某钨锡矿区土壤重金属污染状况及健康风险评价研究[J].环境科学与管理,2017,42(3):178-181. [11] 邬光海,王晨昇,陈鸿汉.内蒙古废弃钨钼矿区周围土壤重金属污染生态环境评价及成因分析[J].中国地质,2020,47(6):1838-1852. [12] ZHENG X J,CHEN M,WANG J F,et al.Ecological risk assessment of heavy metals in the vicinity of tungsten mining areas,southern Jiangxi province[J].Soil and Sediment Contamination,2020,38(2):1-15. [13] 中华人民共和国生态环境部.建设用地土壤污染状况调查技术导则HJ 25.1—2019[S].北京:中国环境科学出版社,2019. [14] 中华人民共和国生态环境部.建设用地土壤污染风险管控和修复监测技术导则HJ 25.2—2019[S].北京:中国环境科学出版社,2019. [15] 王凯.场地土壤重金属污染特征及健康风险评估研究[D].北京:中国地质大学(北京),2019. [16] 中华人民共和国生态环境部.土壤环境质量建设用地土壤污染风险管控标准(试行):GB 36600—2018[S].北京:中国环境科学出版社,2018. [17] 朱静,侯耀宗,邹书成等.武汉集中式饮用水源地土壤重金属的时空分布特征及生态风险评价[J/OL].https://doi.org/10.13227/j.hjkx.202010196.2021-05-13. [18] 孟晓飞,郭俊娒,杨俊兴,等.河南省典型工业区周边农田土壤重金属分布特征及风险评价[J].环境科学,2021,42(2):900-908. [19] 邱坤艳,赵阳,赵林林,等.铅冶炼区土壤剖面重金属污染特征及风险评价[J].环境保护科学,2020,46(6):155-159. [20] 韩术鑫,王利红,赵长盛.内梅罗指数法在环境质量评价中的适用性与修正原则[J].农业环境科学学报,2017,36(10):2153-2160. [21] MAZUREK R,KOWALSKA J,GASIOREK M.Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution[J].Chemosphere,2017,168:839-850. [22] 郑影怡,刘杰,蒋萍萍等.河池市某废弃冶炼厂周边农田土壤重金属污染特征及风险评价[J].环境工程,2021,39(5):8. [23] 徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,31(2):112-115. [24] KAMANI H,NEZAM M,MANSOUR G,et al.Concentration and ecological risk of heavy metal in street dusts of Eslamshahr,Iran[J].Risk Assess,2018,24:961-970. [25] 温鹏翀,温汉辉,蔡立梅,等.典型产业承接区土壤砷含量的空间分布特征及影响因素[J].环境化学,2021,40(1):204-212. [26] 范拴喜.宝鸡市长青镇冶炼厂周围土壤重金属污染与健康风险评估[J].环境工程,2015,33(4):121-127. [27] PHILIP P E.Variability of soil properties related to vegetation cover in a tropical rainforest landscape[J].Journal of Geography and Regional Planning,2010,3(7):177-184. [28] 奚旦立.环境监测[M].2版.北京:高等教育出版社,1995. [29] 蒋慧豪.大型有色冶炼区土壤重金属污染特征及健康风险评价[D].西安:长江大学,2020.
点击查看大图
计量
- 文章访问数: 187
- HTML全文浏览量: 19
- PDF下载量: 16
- 被引次数: 0