CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垃圾图像识别研究进展

金佩薇 姚燕 梁晓瑜 蔡晋辉

金佩薇, 姚燕, 梁晓瑜, 蔡晋辉. 垃圾图像识别研究进展[J]. 环境工程, 2022, 40(1): 196-206. doi: 10.13205/j.hjgc.202201029
引用本文: 金佩薇, 姚燕, 梁晓瑜, 蔡晋辉. 垃圾图像识别研究进展[J]. 环境工程, 2022, 40(1): 196-206. doi: 10.13205/j.hjgc.202201029
JIN Peiwei, YAO Yan, LIANG Xiaoyu, CAI Jinhui. OVERVIEW OF RESEARCHES ON MUNICIPAL SOLID WASTE IMAGE RECOGNITION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 196-206. doi: 10.13205/j.hjgc.202201029
Citation: JIN Peiwei, YAO Yan, LIANG Xiaoyu, CAI Jinhui. OVERVIEW OF RESEARCHES ON MUNICIPAL SOLID WASTE IMAGE RECOGNITION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 196-206. doi: 10.13205/j.hjgc.202201029

垃圾图像识别研究进展

doi: 10.13205/j.hjgc.202201029
详细信息
    作者简介:

    金佩薇,女,硕士研究生。12290511958@qq.com

    通讯作者:

    姚燕,女,副教授,主要从事生物质检测与分析,工业自动化等领导研究。yanyan@cjlu.edu.cn

OVERVIEW OF RESEARCHES ON MUNICIPAL SOLID WASTE IMAGE RECOGNITION

  • 摘要: 实现生活垃圾自动分类是解决城市固体废弃物(municipal solid waste, MSW)问题的有效途径。着眼于近10年基于计算机视觉的垃圾图像识别相关研究,依据垃圾自动分类方法的差异性,将当前现有相关研究分为基于传统机器学习方法和基于深度学习方法。介绍了机器学习方法以及深度学习方法特征提取方式,对比分析了传统机器学习方法和基于深度学习方法的垃圾种类识别的优缺点,着重阐述深度学习方法通用神经网络的应用研究。此外,对当前垃圾图像识别相关研究所用数据集进行了介绍,并对当前垃圾图像识别存在的问题进行了分析与展望。
  • [1] KAZA S,YAO L,BHADA P,et al.What a waste 2.0:a global snapshot of solid waste management to 2050[M].Washing:World Bank Publiction,2018:295.
    [2] 吉贵祥,顾杰,郭敏,等.生活垃圾焚烧二噁英排放对人群健康影响研究进展[J].环境监控与预警,2020,12(5):75-81.
    [3] SALMADOR A,CID J P,NOVELLE I R.Intelligent garbage classifier[J].International Journal of Interactive Multimedia and Artificial Intelligence,2008,1(1):31-36.
    [4] OTSU N.A threshold selection method from gray-level histograms[J].IEEE Transactions on Systems,Men,and Cybernetics,1979,9(1):62-66.
    [5] BEUCHER S,LANTUEJOUL C.Use of watersheds in contour detection[C]//International workshop on image processing:real-time edge motion detection/estimation,RENNES,France,1979:1-12.
    [6] RUIZ V,SANCHEZ Á,VELEZ J F,et al.Automatic image-based waste classification[C]//Lecture Notes in Computer Science (IWINAC 2019),Barcelona Spain,2019:422-431.
    [7] HU M K.Visual pattern recognition by moment invariants[J].Information Theory,1962,8(2):179-187.
    [8] 黄浩然.基于Hu不变矩的垃圾分类和识别[J].自动化应用,2020(8):74-76.
    [9] MACQUEEN J.Some methods for classification and analysis of multivariate observations[C]//Processing of the fifth Berkeley Symposium on Mathematical Statistics & Probability,Oakland,CA,USA.1967:281-297.
    [10] SKAR G E,MOKBEL M,DARWICH A,KHNEISSER M N,HADI A.Comparing deep learning and support vector machines for autonomous waste sorting[C]//2016 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET),Beirut,Lebanon.IEEE,2016:207-212.
    [11] YANG M,THUNG G.Classification of TrashNet for recyclability status[J].CS229 Project Report,2016,2016.
    [12] SALIMI I,DEWANTRAR B S B,WIBOWO I K.Visual-based trash detection and classification system for smart trash bin robot[C]//2018 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC),Bali,Indonesia,2018.2019:378-383.
    [13] CARLOS B L,ALEJANDRO R,MANUEL E.Automatic waste classification using computer vision as an application in Colombian High School[C]//6th Latin-American Conference on Network and Electronic Media (LACNEM 2015),Medellin,Colombia,2015.
    [14] MAIR E,HAGER G D,SUPPA M,et al.Adaptive and generic corner detection based on the accelerated segment test[C]//Proceeding of the 11th European Conference on Computer Vision:Part Ⅱ (Computer Vision-ECCV 2010),Berlin Heidelberg,2010,2010:183-196.
    [15] 申新杰,兰浩,曾渝.基于AGAST角点域特征特征的垃圾识别算法[J].电脑知识与技术,2020,16(20):183-186.
    [16] 谈笑.基于BP神经网络的医疗废物识别与分类研究[J].电子设计工程,2019,27(24):6-10.
    [17] 黄兴华,叶军一,熊杰.基于纹理特征融合的道路垃圾图像识别及提取[J].计算机工程与设计,2019,40(11):3212-3218

    ,3305.
    [18] KRIZHEVSKY A,SUTSKEVER I,HINTON G.ImageNet classification with deep convolutional neural networks[J].Advances in Neural Information Processing Systems,2012,25(2):1-9.
    [19] NAIR V,HINTON G E.Rectified linear units improve restricted Boltzmann machines[C]//Proceedings of the Twenty-seventh International Conference on Machine Learning (ICML 2010),2010.
    [20] HINTON G E,SRIVASTAVA N,KRIZHEVSKY A,et al.Improving neural networks by preventing co-adaptation of feature detectors[J].Computer Science,2012,3(4):212-223.
    [21] CHU Y H,HUANG C,XIE X D,et al.Multilayer hybrid deep-learning method for waste classification and recycling[J].Computational Intelligence and Neuroence,2018:1-9.
    [22] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].Computer Science,2014.
    [23] KNOWLES J,KENNEDY S,KENNEDY T.OscarNet:using transfer learning to classify disposable waste[R].2018:1-5.
    [24] SRINILTA C,KANHARATTANACHAI S.Municipal solid waste segregation with CNN[J].International Conference on Engineering,Applied Sciences and Technology (ICEAST),Luang Prabang,2019.
    [25] SEZGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2015:1-9.
    [26] 陈非予,杨婷婷,蒋铭阳.基于深度学习技术的生活垃圾分类模型审计[J].电子元器件与信息技术,2020,4(7):94-96.
    [27] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision & Pattern Recognition,2016.
    [28] ADEDEJI O,WANG Z H.Intelligent waste classification system using deep learning convolutional neural network[J].Procedia Manufacturing,2019,35:607-612.
    [29] 董子源,韩卫光.基于卷积神经网络的垃圾图像分类算法[J].计算机系统应用,2020,29(8):199-204.
    [30] XIE S N,GIRSHICK R,PIOTR D,et al.Aggregated Residual Transformations for Deep Neural Networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2017:5987-5995.
    [31] 余东,敬超.基于神经网络的智能垃圾分类软件设计与实现[J].科学技术创新,2020(26):120-122.
    [32] ANH H V,LE H S,et al.A novel framework for trash classification using deep transfer learning[C]//Special Section on Data Mining for Internet of Things.IEEE Access,2019:178632-178639.
    [33] HUANG G,LIU Z,LAURENS V D M,et al.Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CPVR),2017:2261-2269.
    [34] RAHMI A A,KESKIN S R,KAYA M,et al.Classification of TrashNet dataset based on deep learning models[C]//2018 IEEE International Conference on Big Data,2018:2058-2062.
    [35] ZENG M,LU W K,XU W K,et al.PublicGarbageNet:a deep learning framework for public garbage classification[C]//Proceedings of the 39th Chinese Control Conference,Shengyang,China,2020:7200-7205.
    [36] CENK B,MELTEM A,FUAT B,et al.RecycleNet:intelligent waste sorting using deep neural networks[C]//2018 IEEE International Conference on Intelligent Systems and Application (INISTA),Thessaloniki,Greece.IEEE,2018.
    [37] HOWARD A G,ZHU M L,CHEN B,et al.MobileNet:efficient convolution neural networks for mobile vision applications[J].2017.
    [38] 梅书枰.基于MobileNetV3公共垃圾分类系统[D].武汉:武汉纺织大学,2020.
    [39] VIOLA.Robust real-time object detection[J].International Journal of Computer Vision,2001,57(2):87.
    [40] HUANG S C,CHEN B H.Highly accurate moving object detection in variable bit rate video-based traffic monitoring systems[J].IEEE Transactions on Neural Networks & Learning Systems,2013,24(12):1920-1931.
    [41] SELIM B,HESAM N,MATTHIAS G,et al.Real-time object detection and tracking for industrial application[J].2008.
    [42] MUTHUKKUMARASAMY V,BLUMENSTIN M M,et al.Intelligent illicit object detection system for enhanced aviation security[J].Cancer ENCE,2004,103(7):1177-1181.
    [43] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.
    [44] AWE O,MENGISTU R,SREEDHAR V.Final report:smart trash net:waste localization and classification[J].2017:1-6.
    [45] 马雯,于炯,王潇,等.基于改进Faster R-CNN的垃圾检测和分类[J].计算机工程,2020:1-8.
    [46] SERMANET P,EIGEN D,ZHANG X,et al.OverFeat:integrated recognition,localization and detection using convolutional networks[J].Eprint Arxiv,2013.
    [47] MOHAMMAD S R,ANDREAS V K,ANDRE D,et al.A computer vision system to localize and classify wastes on the streets[M]//Computer Vision System (ICVS2017),Springer,Cham,2017:195-204.
    [48] RUSSELL R,ANDRILUKA M,NG A Y.End-to-end people detection in crowded scenes[J].Computer Science,2016.
    [49] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2016:779-788.
    [50] 王铭杰.基于YOLO V3的垃圾自动定位及分类方法[J].无线互联科技,2019,16(20):110-112.
    [51] LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single Shot MultiBox Detector[M]//Computer Vision-ECCV 2016(ECCV 2016),Springer,Cham,2016:21-37.
    [52] 彭昕昀,李嘉乐,李婉,等.基于SSD算法的垃圾识别分类研究[J].韶关学院院报(自然科学),2019,40(6):15-20.
  • 加载中
计量
  • 文章访问数:  290
  • HTML全文浏览量:  24
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-21
  • 网络出版日期:  2022-03-30
  • 刊出日期:  2022-03-30

目录

    /

    返回文章
    返回