SIMULTANEOUS CATALYTIC PURIFICATION OF NOx AND O-DCB WITH SUPPORTED Mn HYDROTALCITE-LIKE STRUCTURE CATALYST
-
摘要: 采用共沉淀法成功制备了钴铁层状双氢氧化物结构载体(CoFe-LDH),并采用浸渍法负载活性组分Mn经煅烧制备不同Mn负载量的类水滑石结构催化剂——MnxCoFe-LDO催化剂(其中x为硝酸锰与CoFe-LDH的质量比),探究了催化剂对典型工业尾气中氮氧化物(NOx)和含氯挥发性有机化合物(CVOCs)的催化性能,并对催化剂进行XRD、H2-TPR、NH3-TPD及TEM-EDX mapping等表征。结果表明:Mn的加入会极大提高钴铁层状氧化物(CoFe-LDO)的催化性能,其中质量比为0.25的催化剂活性最高,测试温度范围内脱硝率维持在90%以上,且300℃邻二氯苯(o-DCB)的去除率可达到95.4%。在该配比下制备的催化剂活性组分Mn的分散性最好,且表面酸性位数量及氧化还原性能最佳。Abstract: The cobalt-iron layered double hydroxide structure carrier(CoFe-LDH) was successfully prepared by the co-precipitation method, and the active component Mn was loaded by the impregnation method and calcined to prepare the hydrotalcite-like structure catalyst MnxCoFe-LDO catalyst with different Mn loadings(Where x was the mass ratio of manganese nitrate solution to CoFe-LDH). The catalytic performance of the catalyst on nitrogen oxides(NOx) and chlorinated volatile organic compounds(CVOCs) in typical industrial exhaust gas was explored, and the catalyst was characterized by XRD, H2-TPR, NH3-TPD and TEM-EDX mapping. The results showed that the addition of Mn greatly improved the catalytic performance of CoFe-LDO. Among them, the catalyst with a mass ratio of 0.25 had the highest activity. The denitration efficiency was maintained above 90% in the test temperature range, and the efficiency of o-DCB removal at 300 ℃ could be up to 95.4%. This was mainly due to the best dispersibility of the active component Mn of the catalyst prepared under this ratio, and the best redox performance.
-
Key words:
- hydrotalcite-like /
- NOx /
- CVOCs /
- catalytic oxidation
-
[1] 邢奕,张文伯,苏伟,等.中国钢铁行业超低排放之路[J].工程科学学报,2021,43(1):1-9. [2] 梁宝瑞,赵荣志,张文伯,等.钢铁行业二噁英的形成机理及降解方法研究现状[J].中国冶金,2021,31(2):1-5. [3] 闫晓淼,李玉然,朱廷钰,等.钢铁烧结烟气多污染物排放及协同控制概述[J].环境工程技术学报,2015,5(2):85-90. [4] 张璞,王珲,李鹏飞,等.烧结烟气中污染物防治技术应用现状[J].环境工程,2017,35(7):101-105. [5] JOHNSON J.Dioxin risk:are we sure yet?[J].Environmental Science & Technology,1995,29(1):24A-25A. [6] SHOKOUHIMEHR M,HONG K,LEE T H,et al.Magnetically retrievable nanocomposite adorned with Pd nanocatalysts:efficient reduction of nitroaromatics in aqueous media[J].Green Chemistry,2018,20:3809-3817. [7] GORLIN Y,CHUNG C J,NORDLUND D,et al.Mn3O4 supported on glassy carbon:an active non-precious metal catalyst for the oxygen reduction reaction[J].Acs Catalysis,2013,2(12):2687-2694. [8] WANG X Y,KANG Q,LI D.Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts[J].Catalysis Communications,2008,9(13):2158-2162. [9] TSONCHEVA T,ISSA G,BLASCO T,et al.Catalytic VOCs elimination over copper and cerium oxide modified mesoporous SBA-15 silica[J].Applied Catalysis A:General,2013,453(1):1-12. [10] ZHANG Z C,XU B,WANG X.Engineering nanointerfaces for nanocatalysis[J].Chemical Society Reviews,2014,43(22):7870-7886. [11] ZHANG J T,LI Z,CHEN Y,et al.Nickel-iron layered double hydroxide hollow polyhedrons as a superior sulfur host for lithium-sulfur batteries[j].angewandte chemie international edition,2018,57(34):87-95. [12] YAN Q H,CHEN S N,ZHANG C,et al.Synthesis and catalytic performance of Cu1Mn0.5Ti0.5Ox mixed oxide as low-temperature NH3-SCR catalyst with enhanced SO2 resistance[J].Applied Catalysis B:Environmental,2018,238(2):236-247. [13] CHEN S N,YAN Q H,ZHANG C,et al.A novel highly active and sulfur resistant catalyst from Mn-Fe-Al layered double hydroxide for low temperature NH3-SCR[J].Catalysis Today,2019,327(54):81-89. [14] LU H T,SUI M H,YUAN B J,et al.Efficient degradation of nitrobenzene by Cu-Co-Fe-LDH catalyzed peroxymonosulfate to produce hydroxyl radicals[J].Chemical Engineering Journal,2019,357(14):140-149. [15] FENG L X,LI A,LI Y X,et al.A highly active CoFe layered double hydroxide for water splitting[J].ChemPlusChem,2017,82(3):483-488. [16] WU X,CI C,DU Y L,et al.Facile synthesis of NiAl-LDHs with tunable establishment of acid-base activity sites[J].Materials Chemistry and Physics,2018,211(61):72-78. [17] CHMIELARZ L,KUŚTROWSKI P, RAFALSKA-ŁASOCHA A, et al.Influence of Cu,Co and Ni cations incorporated in brucite-type layers on thermal behaviour of hydrotalcites and reducibility of the derived mixed oxide systems[J].Thermochimica Acta,2002,395(12):225-236. [18] YAN Q H,NIE Y,YANG R Y,et al.Highly dispersed CuyAlOx mixed oxides as superiorlow-temperature alkali metal and SO2 resistant NH3-SCR catalysts[J].Applied Catalysis A:General,2017,538(2):37-50. [19] NIE Y,YAN Q H,CHEN S N,et al.CuTi LDH derived NH3-SCR catalysts with highly dispersed CuO active phase and improved SO2 resistance[J].Catalysis Communications,2017,97(31):47-50. [20] KIM S C,SHIM W G.Catalytic combustion of VOCs over a series of manganese oxide catalysts[J].Applied Catalysis B Environmental,2010,98(34):180-185. [21] XIONG S C,PENG Y,WANG D,et al.The role of the Cu dopant on a Mn3O4 spinel SCR catalyst:Improvement of low-temperature activity and sulfur resistance[J].Chemical Engineering Journal,2020,387:124090. [22] OBALOVÁ L,KARÁSKOVÁ K,JIRÁTOVÁ K,et al.Effect of potassium in calcined Co-Mn-Al layered double hydroxide on the catalytic decomposition of N2O[J].Applied Catalysis B Environmental,2009,90(12):132-140. [23] ZHAN S H,ZHU D D,QIU M Y,et al.Highly efficient removal of NO with ordered mesoporous manganese oxide at low temperature[J].RSC Advances,2015,5(37):29353-29361. [24] LIU J X,SHI X B,LIU H,et al.Study on the performance of magnetic Co3O4/γ-Fe2O3catalyst in NO+CO reaction[J].Applied Surface Science,2020,533:147498. [25] KHDER A E R S,ALTASS H M,ORIF M I,et al.Preparation and characterization of highly active Pd nanoparticles supported Mn3O4 catalyst for low-temperature CO oxidation[J].Materials Research Bulletin,2019,113(3):215-222.
点击查看大图
计量
- 文章访问数: 348
- HTML全文浏览量: 39
- PDF下载量: 24
- 被引次数: 0