中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米银对反硝化无色杆菌的毒性作用

任晓宇 李英华 李海波 邓文贺 南瑞斌

任晓宇, 李英华, 李海波, 邓文贺, 南瑞斌. 纳米银对反硝化无色杆菌的毒性作用[J]. 环境工程, 2022, 40(2): 27-33,80. doi: 10.13205/j.hjgc.202202005
引用本文: 任晓宇, 李英华, 李海波, 邓文贺, 南瑞斌. 纳米银对反硝化无色杆菌的毒性作用[J]. 环境工程, 2022, 40(2): 27-33,80. doi: 10.13205/j.hjgc.202202005
REN Xiaoyu, LI Yinghua, LI Haibo, DENG Wenhe, NAN Ruibin. TOXICITY OF SILVER NANOPARTICLES TO ACHROMOBACTER DENITRIFICANS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 27-33,80. doi: 10.13205/j.hjgc.202202005
Citation: REN Xiaoyu, LI Yinghua, LI Haibo, DENG Wenhe, NAN Ruibin. TOXICITY OF SILVER NANOPARTICLES TO ACHROMOBACTER DENITRIFICANS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 27-33,80. doi: 10.13205/j.hjgc.202202005

纳米银对反硝化无色杆菌的毒性作用

doi: 10.13205/j.hjgc.202202005
基金项目: 

国家自然科学基金项目(41571455)

详细信息
    作者简介:

    任晓宇(1995-),男,硕士研究生,主要研究方向为纳米银的微生物毒理。1252582553@qq.com

    通讯作者:

    李英华,博士,主要研究方向为污水生态处理技术研究。liyinghua@mail.neu.edu.cn

TOXICITY OF SILVER NANOPARTICLES TO ACHROMOBACTER DENITRIFICANS

  • 摘要: 为研究纳米银(AgNPs)对反硝化无色杆菌(Achromobacter denitrificans)的毒性作用,选择室内培养方式,探究纳米银对Achromobacter denitrificans的生长抑制、氨化作用、同化吸收NH4+-N、细胞膜表面结构和活性氧生成的影响。研究发现,纳米银可抑制细菌生长,抑制效果与浓度和暴露时间呈正相关。添加10 mg/LAgNPs在硝化培养基中,Achromobacter denitrificans生长抑制率12h后达38.2%,而添加1 mg/LAgNPs时生长抑制率仅为11.5%。不同AgNPs暴露浓度条件下,4~6 h后生长抑制率均趋于稳定。暴露培养后的细菌生化活性降低,AgNPs投加浓度从1 mg/L提高到10 mg/L时,NH+4-N生成速率从2.77 mg/(L·h)降低至2.07 mg/(L·h),降低了25.3%;NH4+-N同化速率从5.52 mg/(L·h)降低至1.71 mg/(L·h),降低了69.1%。pH是影响毒性作用的重要因素,弱酸(pH 5.0)与弱碱(pH 9.0)均不利于细菌生存。通过毒性作用机理分析可知,纳米银可导致细胞膜表面凹陷破裂,膜内物质泄漏流出,细胞内发生活性氧的累积。
  • [1] VANCE M E,TODD K,VEJERANO E P,et al.Nanotechnology in the real world:redeveloping the nanomaterial consumer products inventory[J].Blstn Journal of Nanotechnology,2015,6:69-80.
    [2] STENSBERG M C,WEI Q S,MCLAMORE E S,et al.Toxicological studies on silver nanoparticles:challenges and opportunities in assessment,monitoring and imaging[J].Nanomedicine,2011,6(5):879-898.
    [3] CHEMOUSOVAS S,EPPLE M.Silver as antibacterial agent:ion,nanoparticle,and metal[J].Angewandte Chemie International Edition,2013,44(6):1636-1653.
    [4] LIU J Y,SONSHIN D A,SHERVANI S,et al.Controlled release of biologically active silver from nanosilver surfaces[J].ACS Nano,2010,4(11):6903-6913.
    [5] HWANG E T,JIN H L,YUN J C,et al.Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria[J].Small,2010,4(6):746-750.
    [6] PARK E J,YI J,KIM Y,et al.Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism[J].Toxicology in Vitro,2010,24(3):872-878.
    [7] JIANG X M,MICHU T,WANG L M,et al.Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells:implication for cytotoxicity[J].Nanotoxicology,2015,9(2):181-189.
    [8] CHOI O,HU Z.Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria[J].Environmental Science & Technology,2008,42(12):4583-4588.
    [9] 范俊楠,赵建伟,朱端卫.湖泊氮素氧化及脱氮过程研究进展[J].生态学报,2012,32(15):4924-4931.
    [10] LIANG Z H,DAS A,HU Z Q.Bacterial response to a shock load of nanosilver in an activated sludge treatment system[J].Water Research,2010,44(18):5432-5438.
    [11] YANG Y,CHEN Q,WALL J D,et al.Potential nanosilver impact on anaerobic digestion at moderate silver concentrations[J].Water Research,2012,46(4):1176-1184.
    [12] 伍玲丽,张晓雪,舒昆慧,等.两种粒径纳米银对Nitrosomonas europaea的毒性效应[J].中国环境科学,2019,39(10):4401-4408.
    [13] YANG Y,WANG J,XIU Z M,et al.Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria[J].Environmental Toxicology and Chemistry,2013,32(7):1488-1494.
    [14] DONG B,LIU G F,ZHOU J T,et al.Transformation of silver ions to silver nanoparticles mediated by humic acid under dark conditions at ambient temperature[J].Journal of Hazardous Materials,2020,383(Feb.5):121190.1-121190.9.
    [15] PERETYAZHKO T S,ZHANG Q B,COLVIN V L.Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions:kinetics and size changes[J].Environmental Science & Technology,2014,48(20):11954-11961.
    [16] BORCH T,KRETZSCHMAR R,KAPPLER A,et al.Biogeochemical redox processes and their impact on contaminant dynamics[J].Environmental Science & Technology,2010,44(1):15-23.
    [17] RASOOL K,LEE D S.Inhibitory effects of silver nanoparticles on removal of organic pollutants and sulfate in an anaerobic biological wastewater treatment process[J].Journal of Nanoscience & Nanotechnology,2016,16(5):4456-4463.
    [18] YUAN Z H,LI J W,CUI L,et al.Interaction of silver nanoparticles with pure nitrifying bacteria[J].Chemosphere,2013,90(4):1404-1411.
    [19] LOO S L,KRANTZ W B,FANE A G,et al.Bactericidal mechanisms revealed for rapid water disinfection by superabsorbent cryogels decorated with silver nanoparticles[J].Environmental Science & Technology:ES&T,2015,49(4):2010-2018.
    [20] GORDON O,SLENTERS T V,BRUNETTO P S,et al.Silver coordination polymers for prevention of implant infection:thiol interaction,impact on respiratory chain enzymes,and hydroxyl radical induction[J].Antimicrobial Agents and Chemotherapy,2010,54(10):4208-4218.
    [21] YANG E J,KIM S,KIM J S,et al.Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles[J].Biomaterials,2012,33(28):6858-6867.
  • 加载中
计量
  • 文章访问数:  340
  • HTML全文浏览量:  40
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-26
  • 网络出版日期:  2022-04-02
  • 刊出日期:  2022-04-02

目录

    /

    返回文章
    返回