INCINERATION DISPOSAL OF HYPERACCUMULATOR SEDUM PLUMBIZINCICOLA AND LEACHING TOXICITY OF HEAVY METALS
-
摘要: 利用流化床焚烧炉与热重分析仪,研究镉(Cd)、锌(Zn)超积累植物——伴矿景天的焚烧失重与飞灰中重金属分布规律。同时,研究不同焚烧温度工况下旋风灰、布袋灰的基本特性和浸出毒性差异,以期为修复植物焚烧产物的进一步处置和资源化利用提供支持。结果表明:伴矿景天焚烧失重可分为水分蒸发、快速裂解和固定碳燃烧3个阶段;旋风灰和布袋灰粒径均呈正态分布规律,且布袋灰粒径更小;2种飞灰的微形貌复杂多样,多为杆状、小球状、不规则的聚合体以及蜂窝状多孔结构;飞灰中Cd、Zn和Pb浓度均随温度升高呈先升高后降低的现象,并在800℃时达到最大值。2种飞灰的TCLP重金属浸出毒性均远超标准限值,存在严重浸出风险。Abstract: The weight loss and heavy metal distribution in fly ash from incineration of a cadmium(Cd) and zinc(Zn) hyperaccumulation plant, Sedum plumbizincicola were studied in a fluidized bed incinerator and a thermogravimetric analyzer. Meanwhile, the basic characteristics including particle distribution, microscopic morphology and leaching toxicity of cyclone ash and bag filter ash under different incineration temperatures were compared, to provide data support for the further disposal and resource utilization of incineration products. The results showed that the weight loss of S. plumbizincicola during incineration could be divided into three periods: moisture evaporation, fast decomposition, and fixed carbon combustion. The particle size distribution patterns of cyclone ash and bag filter ash both followed a normal distribution, and the particle size in bag filter ash was smaller. Complex and diverse microscopic morphology of the two fly ashes was found, with mostly rod-shaped, small spherical, irregular polymer and honeycomb porous structure. Metal(Cd, Zn and Pb) concentrations in the fly ashes firstly increased and then decreased with the increasing temperature, and reached maximum values at 800 ℃. In addition, the TCLP leaching toxicity of metals in the two fly ashes far exceeded the standard limit, indicating high leaching risk in environment.
-
Key words:
- hyperaccumulator /
- incineration fly ash /
- incineration temperature /
- heavy metals /
- leaching toxicity
-
[1] 刘维涛,倪均成,周启星,等.重金属富集植物生物质的处置技术研究进展[J].农业环境科学学报,2014,33(1):15-27. [2] 杨启良,武振中,陈金陵,等.植物修复重金属污染土壤的研究现状及其水肥调控技术展望[J].生态环境学报,2015,24 (6):1075-1084. [3] LI J T,GURAJALA H K,WU L H,et al.Hyperaccumulator plants from China:a synthesis of the current state of knowledge[J].Environmental Science & Technology,2018,52 (21):11980-11994. [4] 贾威,陈金全,常军军.汞污染生物修复研究进展[J].环境工程,2020,38(5):171-178. [5] 张文博,王彩虹,刘艳萍.重金属富集植物的超积累机理研究进展[J].云南化工,2020,47 (12):9-11. [6] 姜理英,杨肖娥,石伟勇,等.植物修复技术中有关土壤重金属活化机制的研究进展[J].土壤通报,2003,34(2):154-157. [7] 龚定芳,赵萍萍,胡忆,等.外源8'-炔基脱落酸强化东南景天吸收重金属的研究[J].环境科学学报,2020,40(12):4540-4547. [8] 李柱,周嘉文,吴龙华.2017年土壤重金属污染与修复研究热点回眸[J].科技导报,2018,36(1):189-198. [9] 李方洲,滕玉婷,张亚平,等.土壤重金属修复植物处置技术研究现状与展望[J].环境科学与技术,2018,41(增刊2):213-220. [10] LU S Y,DU Y Z,ZHONG D X,et al.Comparison of trace element emissions from thermal treatments of heavy metal hyperaccumulators[J].Environmental Science & Technology,2012,46 (9):5025-5031. [11] 蔡可兵,彭晓春,杨仁斌,等.垃圾焚烧飞灰处置与资源化利用研究进展[J].环境科学与管理,2012,37(4):30-34. [12] 李华,司马菁珂,罗启仕,等.危险废物焚烧飞灰中重金属的稳定化处理[J].环境工程学报,2012,6(10):3740-3746. [13] 刘辉,孟菁华,史学峰.生活垃圾焚烧飞灰重金属稳定化技术综述[J].环境科学与管理,2016,41(5):69-71. [14] 林涛,谢巧玲,陈福明,等.基于重金属提取的垃圾焚烧飞灰无害化处理[J].环境工程学报,2018,12(9):2642-2649. [15] ZHANG J,WU S,XU J L,et al.Comparison of ashing and pyrolysis treatment on cadmium/zinc hyperaccumulator plant:effects on bioavailability and metal speciation in solid residues and risk assessment[J].Environmental Pollution,2020,272(5):116039. [16] WEIBEL G,EGGENBERGER U,SCHLUMBERGER S,et al.Chemical associations and mobilization of heavy metals in fly ash from municipal solid waste incineration[J].Waste Management,2017,62:147-159. [17] JIAO F C,ZHANG L,DONG Z B,et al.Study on the species of heavy metals in MSW incineration fly ash and their leaching behavior[J].Fuel Processing Technology,2016,152:108-115. [18] 李夫振,周少奇,林奕明.垃圾焚烧飞灰中不同粒径的毒性特性[J].环境工程学报,2013,7(2):684-688. [19] 胡艳军,孙铁.不同粒径垃圾焚烧飞灰中重金属富集特性表征[J].环境化学,2012,31(11):717-1723. [20] BDGUSH A,STEGEMANN J S,WOOD L,et al.Element composition and mineralogical characterisation of air pollution control residue from UK energy-from-waste facilities[J].Waste Management,2015,36:119-129. [21] ZHANG Y,CETIN B,LIKOS W J,et al.Impacts of pH on leaching potential of elements from MSW incineration fly ash[J].Fuel,2016,184:815-825. [22] ZHONG D X,ZHONG Z P,WU L H,et al.Thermal characteristics and fate of heavy metals during thermal treatment of Sedum plumbizincicola,a zinc and cadmium hyperaccumulator[J].Fuel Processing Technology,2015,131:125-132. [23] LI L L,WANG G,WANG S Y,et al.Thermogravimetric and kinetic analysis of energy crop Jerusalem artichoke using the distributed activation energy model[J].Journal of Thermal Analysis & Calorimetry,2013,114 (3):1183-1189. [24] NIKRAVAN M,RAMEZANIANPOUR A A,MAKNOON R.Study on physiochemical properties and leaching behavior of residual ash fractions from a municipal solid waste incinerator (MSWI) plant[J].Journal of Environmental Management,2020,260:110042. [25] JIANG J G,XU X,WANG J,et al.Investigation of basic properties of fly ash from urban waste incinerators in China[J].Journal of Environmental Sciences,2007,19 (4):458-463. [26] 陈清,汪屈峰,李艳,等.华南某垃圾焚烧厂焚烧飞灰理化特性及重金属形态研究[J].环境卫生工程,2019,27(4):13-18. [27] 王春峰,陈冠飞,朱艳臣,等.不同粒径垃圾焚烧飞灰重金属毒性浸出及生物可给性[J].环境科学,2016,37(12):4891-4898.
点击查看大图
计量
- 文章访问数: 154
- HTML全文浏览量: 26
- PDF下载量: 7
- 被引次数: 0