SIMULATION AND ORTHOGONAL OPTIMIZATION ON PYROLYSIS AND GASIFICATION OF MSW BASED ON ASPEN PLUS
-
摘要: 热解气化技术作为一种城市固体废弃物(municipal solid waste, MSW)无害化处理的方式,其相关研究具有现实意义。利用Aspen Plus软件建立了MSW固定床热解气化模型,在模型验证的基础上探讨了气化温度、气化压力和空气当量比对MSW热解气化过程的影响。通过二次回归正交试验法得出MSW热解气化过程中气体产率、产气热值和气化效率与各工艺参数之间的函数关系,并利用Matlab软件对函数关系进行计算,求得最优工艺参数组合。结果显示:随着气化温度的升高,产气热值增加幅度降低,气体产率和气化效率均呈先增加后趋于稳定的趋势。各参数对气化效率的影响程度排序为空气当量比>气化温度>气化压力。当气化温度为891℃,气化压力为1.01×105 Pa,空气当量比为0.2时,气化效率达到最大。Abstract: Pyrolysis and gasification technology, as a harmless treatment method of MSW, has great research significance. The MSW fixed-bed pyrolysis and gasification model was established using Aspen Plus software. The effects of gasification temperature, gasification pressure and air equivalent ratio on the pyrolysis and gasification process of MSW were discussed based on model verification. The quadratic regression orthogonal test method was used to obtain the mathematical relationship between gas yield, gas calorific value, gasification efficiency and process parameters. Matlab software was applied to solve the equation and get the best combination of process parameters. The results showed that with the increase of gasification temperature, the calorific value of gas production increased slightly, and the produced gas yield and gasification efficiency both increased first and then tended to be stable. The air equivalent ratio had the most significant influence on the gasification efficiency, followed by the gasification temperature, and then influence of gasification pressure. When the gasification temperature was 891 ℃, the gasification pressure was 1.01×105 Pa, and the air equivalent ratio was 0.2, the gasification efficiency reached a maximum.
-
Key words:
- MSW /
- pyrolysis /
- gasification /
- orthogonal optimization /
- simulation
-
[1] 晏卓逸,岳波,高红,等.我国村镇生活垃圾可燃组分基本特征及其时空差异[J].环境科学,2017,38(7):3078-3084. [2] 蒋晓燕,温小乐,罗维.北京城市塑料垃圾年产量的模拟预测及其影响因素分析[J].环境科学学报,2020,40(9):3435-3444. [3] 马占云,姜昱聪,任佳雪,等.生活垃圾无害化处理大气污染物排放清单[J].环境科学,2021,42(3):1333-1342. [4] 郝彦龙,侯成林,付丽霞,等.生活垃圾无害化处理工程设计实例[J].环境工程,2020,38(2):135-139. [5] 钱睿,韩健.北京城市生活垃圾处理转型新思路——垃圾热解气化技术[J].环境工程,2014,32(增刊1):689-692. [6] 齐丽,任玥,刘爱民,等.北京市某垃圾焚烧厂周边大气二噁英污染特征及暴露风险[J].环境科学,2017,38(4):1317-1326. [7] DIETRICH M,BERT V D B,ANTHONY V B,et al.State-of-the-art of fast pyrolysis in IEA bioenergy member countries[J].Renewable and Sustainable Energy Reviews,2013,20:619-641. [8] 黄付平,黄智宁,谢启军,等.低温热解耦合高压等离子体技术处理农村生活垃圾工程应用[J].环境工程,2019,37(5):196-199. [9] DUAN W J,YU Q B,WANG K,et al.Aspen Plus simulation of coal integrated gasification combined blast furnace slag waste heat recovery system[J].Energy Conversion & Management,2015,100:30-36. [10] RAMZAN N,ASHRAF A,NAVEED S,et al.Simulation of hybrid biomass gasification using Aspen plus:a comparative performance analysis for food,municipal solid and poultry waste[J].Biomass Bioenergy,2011,35(9):3962-3969. [11] KECHE A J,GADDALE A P R,TATED R G.Simulation of biomass gasification in downdraft gasifier for different biomass fuels using Aspen Plus[J].Clean Technologies and Environmental Policy,2015,17(2):1-9. [12] DING K,XIONG Q G,ZHONG Z P,et al.CFD simulation of combustible solid waste pyrolysis in a fluidized bed reactor[J].Powder Technology,2020,362:177-187. [13] BEGUM S,RASUL M G,AKBAR D.A numerical investigation of municipal solid waste gasification using Aspen Plus[J].Procedia Engineering,2014,90:710-717. [14] VIBHUTI C,SANKAR B,YOGENDRA S.Pyrolysis of mixed municipal solid waste:characterisation,interaction effect and kinetic modelling using the thermogravimetric approach[J].Waste Management,2019,90:152-167. [15] SOUMAN R,YOHANNES K.Future district heating plant integrated with municipal solid waste (MSW) gasification for hydrogen production[J].Energy,2019,180:881-892. [16] 付建英,余权,马瀚程,等.基于Aspen Plus的非均质垃圾与秸秆的共热解气化模拟[J].能源与环境,2020(5):2-5. [17] Tech Aspen.Aspen Plus User Guide[G].2012. [18] 马大朝,高伟康,孙翔,等.稻壳与聚氯乙烯共热解的特性及动力学[J].环境工程,2020,38(1):135-140. [19] 邢文龙,张蒙蒙,朱赫男,等.城市生活垃圾与园林废物的热解实验[J].环境工程,2019,37(3):152-157,197. [20] 胡华军,黄亚继,曹健华,等.烟气中CO2/O2气氛对稻壳流化床热解制炭的影响规律[J].环境工程,2021,39(1):117-122. [21] 程伟.北京城区和农村地区生活垃圾组成特性的对比分析[J].再生资源与循环经济,2020,13(1):17-22. [22] 蔡杰.基于ASPEN Plus的村镇垃圾热解气化燃烧模拟与试验[D].杭州:浙江大学,2021. [23] 任露泉.回归设计及其优化[M].北京:科学出版社,2009. 期刊类型引用(7)
1. 刘晓吉,颜锟,徐恒,王勇群,王志华,张德家,常风民. 富氢合成气生物甲烷化与餐厨垃圾厌氧消化耦合性能分析. 环境工程. 2024(03): 131-137 . 本站查看
2. 石万,李晓姣,袁进,周印羲,余丽,吉伟,彭雅. 基于Aspen Plus污泥耦合发电对循环流化床锅炉性能影响的模拟研究. 洁净煤技术. 2024(S2): 342-349 . 百度学术
3. 魏楚韵,张金泰,刘国庆,黄子瑞,王柏淳,杨海微,周爱姣. 中药渣协同热解物质流和能量流分析. 能源环境保护. 2023(06): 43-54 . 百度学术
4. 常可可,李健,陈冠益,旦增. 西藏高原生活垃圾气化特性研究. 环境卫生工程. 2023(06): 16-21+27 . 百度学术
5. 颜蓓蓓,杨学忠,侯林桐,马德刚,李健,孙昱楠,程占军,陈冠益. 村镇生活垃圾热解处理技术综述. 中国环境科学. 2022(08): 3755-3769 . 百度学术
6. 陈玉龙,吴元,单君,刘翠,孙冬梅,刘英杰. 基于Aspen plus餐厨垃圾RDF的热解气化模拟研究. 辽宁化工. 2022(11): 1537-1541+1545 . 百度学术
7. 王学斌,周澳,杨明辉,王璟,戴高峰,范美军,王建军,冯旭明. 燃煤电厂200t/d生活垃圾无氧热解耦合协同处置优化. 煤炭学报. 2022(11): 3897-3905 . 百度学术
其他类型引用(4)
-

计量
- 文章访问数: 386
- HTML全文浏览量: 41
- PDF下载量: 11
- 被引次数: 11