RESEARCH ADVANCES AND CASE STUDY ON PASSIVATION AND CLOGGING IN PERMEABLE REACTIVE BARRIER(PRB)
-
摘要: 可渗透反应墙(PRB)技术是最具经济效益的原位地下水处理技术之一,但在运行过程中,矿物沉淀钝化和堵塞介质孔隙、气体产生及生物活动堵塞可能引起屏障材料性能的恶化,进而影响PRB运行寿命和效率。为了减轻或解决钝化和堵塞对PRB技术应用的限制,对可渗透反应屏障钝化和堵塞的研究进展及典型案例进行了归纳和研究,详细阐述了引起PRB介质钝化和堵塞的原因和机理,包括矿物沉淀、气体产生、pH的影响和生物膜作用等原因导致的PRB钝化和堵塞,其中矿物沉淀引起的堵塞类型分为钙基矿物沉淀、铁铝矿物沉淀、磷酸盐和硅酸盐类矿物沉淀堵塞。针对不同的钝化和堵塞,分析其影响因素和运行条件,为PRB结构改进设计、提高PRB运行效率和寿命,发展PRB成为长期有效的修复技术提供技术支撑。
-
关键词:
- 可渗透反应屏障(PRB) /
- 钝化 /
- 堵塞 /
- 机理 /
- 措施
Abstract: Permeable reactive barrier(PRB) is currently one of the most economical and effective in-situ groundwater treatment technologies, however, the passivation and clogging of pore space due to mineral precipitation, gas generation and biological activity results into performance failure of barrier materials, which affects the lifetime and efficiency of PRB. In order to alleviate or resolve the limitation of passivation and clogging on application of PRB, the progresses and some cases on passivation and clogging of permeable reactive barrier(PRB) were researched and reviewed, and the various types, causes and mechanisms of PRB passivation and clogging were analyzed, including the passivation and clogging types resulted from mineral precipitation, gas generation, influence of pH and biological activities, etc. Especially, primary mineral precipitation types including, calcium-based mineral precipitation, Fe and Al mineral precipitation, and precipitation due to phosphate, silicate and silicon oxide were discussed. In order to improve operation efficiency and lifetime of PRB, the different types, influences factors and running conditions of passivation and clogging were analyzed, which could provide technical support to design PRB structure successfully, improve operation efficiency and service life of PRB, and develop PRB to be a long-term effective remediation technology.-
Key words:
- permeable reactive barrier(PRB) /
- passivation /
- clogging /
- mechanism /
- countermeasures
-
[1] United States Environmental Protection Agency,2020.Superfund remedy report[R/OL].https://clu-in.org/asr/. [2] STATHAM T M,STARK S C,SNAPE I,et al.A permeable reactive barrier(PRB) media sequence for the remediation of heavy metal and hydrocarbon contaminated water:a field assessment at Casey Station,Antarctica[J].Chemosphere,2016,147,368-375. [3] 钱程,张卫民.PRB反应介质材料在地下水污染修复中的应用研究进展[J].环境工程,2018,36(6):1-5. [4] 祁宝川,韩志勇,陈吉祥.PRB修复重金属污染地下水的反应介质研究进展[J].应用化工,2017,46(4):749-754,59. [5] 郭丽莉,康绍果,王祺,等.渗透式反应墙技术修复铬污染地下水的研究进展[J].环境工程,2020,38(6):9-15. [6] 孟凡生,王业耀,张星星.零价铁PRB修复硝酸盐和铬复合污染地下水[J].环境科学研究,2012,25(11):1279-1284. [7] 刘翔,唐翠梅,陆兆华等.零价铁PRB技术在地下水原位修复中的研究进展[J].环境科学研究,2013,26(12):1309-1315. [8] 刘子璐,李杰,王亚娥,等.Fe0可渗透反应墙处理地下水污染的研究现状与展望[J].应用化工,2020,49(4):218-221,226. [9] 吕永高,蔡五田,杨骊,等.中试尺度下可渗透反应墙位置优化模拟:以铬污染地下水场地为例[J].水文地质工程地质,2020,47(5):193-199. [10] 许佳慧,周海东,吕叔锋,等.EK-PRB对Pb(Ⅱ)污染土壤的修复效果研究[J].上海理工大学学报,2020,42(4):62-68,97. [11] 张超宇,张玉玲,张晟瑀,等不同PRB材料修复东北某油田采区石油污染地下水的效果对比及影响因素分析[J].中国矿业,2016,25(7):67-71. [12] ZHANG W,SHAN N,BAI Y,et al.The innovative application of agriculture straw in in situ field permeable reactive barrier for remediating nitrate-contaminated groundwater in grain-production areas[J].Biochemical Engineering Journal,2020,164:107755. [13] GUAN X H,SUN Y K,QIN H J,et al.The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures:the development in zero-valent iron technology in the last two decades(1994-2014)[J].Water Research,2015,75:224-248. [14] PATHIRAGE P U P.Modelling of clogging in a permeable reactive barrier in acid sulfate soil terrain[D].University of Wollongong,2014. [15] REGMI G,INDRARATNA B,NGHIEM L D,et al.Treatment of acidic groundwater in acid sulfate soil terrain using recycled concrete:column experiments[J].Journal of Environmental Engineering,2011,137(6):433-443. [16] ROWE R K.Long-term performance of contaminant barrier systems[J].Géotechnique,2005,55(9):631-678. [17] TURNER M,DAVE N M,MODENA T,et al.Permeable reactive barriers:Lessons Learned/New Directions[J].Permeable Reactive Barriers Lessons Learned/New Directions,2005. [18] OBIRI-NYARKO F,GRAJALES-MESA S J,MALINA G.An overview of permeable reactive barriers for in situ sustainable groundwater remediation[J].Chemosphere,2014,111:243-259. [19] MOORE A,AND T.YOUNG.Chloride interactions with iron surfaces:implications for perchlorate and nitrate remediation using permeable reactive barriers[J].Journal of Environmental Engineering,2005,131(6):924-933. [20] HENDERSON A D,DEMOND A H.Long-term performance of zero-valent iron permeable reactive barriers:a critical review[J].Environmental Engineering Science,2007,24(4):401-423. [21] INDRARATNA B,PATHIRAGE P U,ROWE R K,et al.Coupled hydro-geochemical modelling of a permeable reactive barrier for treating acidic groundwater[J].Computers and Geotechnics,2014,55:429-439. [22] MAYER K U,BLOWES D W,FRIND E O.Reactive transport modeling of an in situ reactive barrier for the treatment of hexavalent chromium and trichloroethylene in groundwater[J].Water Resources Research,2001,37(12):3091-3103. [23] SZECSODY J E,FRUCHTER J S,BURNS C A,et al.Sr-90Immobilization by Infiltration of a Ca-Citrate-PO4Solution into the Hanford 100-N Area Vadose Zone[J].Arizona Board of Regents Tucson Az United States. [24] GAVASKAR A G N,SASS B,JANOSY R,et al.Design guidance for application of permeable reactive barriers for groundwater remediation[G].2000.1-247. [25] SU C,PULS R W.Arsenate and arsenite removal by zero-valent iron:effects of phosphate,silicate,carbonate,borate,sulfate,chromate,molybdate,and nitrate,relative to chloride[J].Environmental Science and Technology,2001,35(22):4562-4568. [26] SU C,PULS R W.Arsenate and arsenite removal by zerovalent iron:kinetics,redox transformation,and implications for in situ groundwater remediation[J].Environmental Ence & Technology,2001b,35(7):1487-1492. [27] 朱雪强,韩宝平.零价铁渗透性反应墙长期性能的影响因素[J].环境工程,2018,36(2):163-168. [28] PARBS A,EBERT M,DAHMKE A.Long-term effects of dissolved-carbonate species on the degradation of trichloroethylene by zero-valent iron[J].Environmental Science & Technology,2007,41(1):291-296. [29] ZHANG Y,GILLHAM R W.Effects of gas generation and precipitates on performance of Fe0PRBs[J].Ground water,2005,43(1):113-121. [30] KÖBER R,SCHLICKER O,EBERT M,et al.Degradation of chlorinated ethylenes by Fe0:inhibition processes and mineral precipitation[J].Environmental Geology,2002,41(6):644-652. [31] REARDON E J.Anaerobic corrosion of granular iron:measurement and interpretation of hydrogen evolution rates[J].Environmental ence & Technology,1995,29(12):2936-2945. [32] MACKENZIE P D,HORNEY D P,SIVAVEC T M.Mineral precipitation and porosity losses in granular iron columns[J].Journal of Hazardous Materials,1999,68(1/2):1-17. [33] REARDON E J.Zerovalent irons:styles of corrosion and inorganic control on hydrogen pressure buildup[J].Environmental Ence & Technology,2005,39(18):7311-7317. [34] JOHNSON R L,THOMS R B,O’BRIEN JOHNSON R,et al.Mineral precipitation upgradient from a zero-valent iron permeable reactive barrier[J].Ground Water Monitoring & Remediation,2008,28(3):56-64. [35] WILKIN R T,PULS R W.EPA/600/R-03/045a.U.S.Environmental Protection Agency,National Risk Management Research Laboratory,Ground Water and Ecosystems Restoration Division[S].2003. [36] WILKIN R T,PULS R W,SEWELL G W.Long-term performance of permeable reactive barriers using zero-valent iron:geochemical and microbiological effects[J].Ground Water,2003,41(4):493-503. [37] WILKIN R T,ACREE S D,ROSS R R,et al.Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater[J].Science of the Total Environment,2014,(468/469):186-194. [38] Interstate Technology & Regulatory Council.Technical/Regulatory Guidance Permeable Reactive Barrier:Technology Update[R].2011:1-234. [39] SANTISUKKASAEM U,DAS D B.A non-dimensional analysis of permeability loss in zero-valent iron permeable reactive barrier(PRB)[J].Transport in Porous Media,2018,126(1):139-159. [40] LAI K C,LO I M,BIRKELUND V,et al.Field monitoring of a permeable reactive barrier for removal of chlorinated organics[J].Journal of Environmental Engineering,2006,132(2):199-210. [41] PHILLIPS D H,WATSON D B,ROH Y,et al.Mineralogical characteristics and transformations during long-term operation of a zerovalent iron reactive barrier[J].Journal of Environmental Quality,2003,32(6):2033-2045. [42] SCHIPPER L A,BARKLE G F,HADFIELD J C,et al.Hydraulic constraints on the performance of a groundwater denitrification wall for nitrate removal from shallow groundwater[J].Journal of Contaminant Hydrology,2004,69(3/4):263-279. [43] JOHNSON R L,THOMS R B,JOHNSON R O B,et al.Mineral precipitation upgradient from a zero-valent iron permeable reactive barrier[J].Ground Water Monitoring & Remediation,2010,28(3):56-64. [44] PHILLIPS D H,NOOTEN T V,BASTIAENS L,et al.Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater[J].Environmental Science & Technology,2010,44(10):3861-3869. [45] GIBERT O,ASSAL A,DEVLIN H,et al.Performance of a fieldscale biological permeable reactive barrier for in-situ remediation of nitrate-contaminated groundwater[J].The Science of the Total Environment,2019,659:211-220.
点击查看大图
计量
- 文章访问数: 324
- HTML全文浏览量: 55
- PDF下载量: 16
- 被引次数: 0