ADVANCED TREATMENT OF SOLID WASTE LANDFILL LEACHATE BY A COMBINED PROCESS OF Fe/C MICROELECTROLYSIS-FENTON OXIDATION
-
摘要: 采用Fe/C微电解-Fenton氧化联合工艺处理某固体废弃物处理企业填埋区的垃圾渗滤液,以降低其COD与浊度值,并去除渗滤液中的重金属离子。结果表明:当pH=4~5,铁炭复合材料投加量为30~40 g/L,曝气量为40 L/min,水力停留时间(HRT)为1 h时,微电解方法对垃圾渗滤液中的Ni2+、Cr(Ⅵ)、Pb2+的去除效果较好,其去除率分别达到 96%、97%和96%,垃圾渗滤液色度去除率为92.41%,COD去除率为62.33%,浊度由40.73NTU降至3.09 NTU,COD由579.2 mg/L降至218.16 mg/L。对微电解工艺出水进一步采用Fenton氧化工艺处理,结果表明:当Fe2+浓度为0.007 mol/L,氧化时间为90 min,n(H2O2):n(Fe2+)=1.2:1条件下,COD去除率为67.50%,浊度为53.20%,处理后的出水浊度为1.47 NTU、COD为69.49 mg/L,达到GB 18918-2002《城镇污水处理厂污染物排放标准》的二级排放标准。Abstract: The late-stage waste infiltration fluid from the solid waste landfill in Jiangmen was treated by a combined process of Fe/C micro electrolysis-Fenton oxidation, to reduce COD, turbidity value and the concentration of heavy metal ions in the leachate. Results showed that under the condition of pH between 4 and 5, dosage of iron-carbon composite of 30~40 g/L, aeration volume of 40~60 L/min, the hydraulic retention time (HRT) of 1 hour, the removal rate of Ni2+, Cr(Ⅵ) and Pb2+ in waste leachate was 96%,97% and 96% respectively, the removal rate of the leachate turbidity and COD was 92.41% and 62.33% respectively, the turbidity decreased from 40.73 NTU to 3.09 NTU, and the COD decreased from 579.2 mg/L to 218.16 mg/L. In further Fenton oxidation treatment, research results showed that under the condition of Fe2+concentration of 0.007 mol/L, oxidation time of 90 min, n(H2O2):n(Fe2+)=1.2:1, the removal rate of the COD and turbidity was 67.50% and 53.20% respectively, the value of turbidity was 1.47 NTU, the value of COD was 69.49 mg/L, reaching the Rank Ⅱ limiting value of China's National Standard of Sewage discharge (GB18918-2002).
-
Key words:
- Fe/C micro-electrolysis /
- Fenton oxidation /
- heavy metal /
- landfill leachate /
- COD
-
[1] SONG X S, YAN D H, LIU Z H.Performance of laboratory-scale constructed wetlands coupled with micro-electric field for heavy metal-contaminating wastewater treatment[J].Ecological Engineering, 2011, 37:2061-2065. [2] LIU W W, TU X Y, WANG X P.Pretreatment of coking wastewater by acid out micro-electrolysis process with in situ electrochemical peroxidation reaction[J].Chemical Engineering Journal, 2012, 200/202:720-728. [3] DING S L, ZHAO Z, TIAN Q Q, et al.Effect of iron-carbon micro-electrolysis-fenton on the dewatering performance of sludge[J].Environmental Science and Pollution Research, 2021, 28:47126-47135. [4] KANG M M, CHEN Q G, LI J J, et al.Preparation and study of a new type of Fe-C micro-electrolysis filler in oil-bearing ballast water treatment[J].Environmental Science and Pollution Research, 2019, 26:10673-10684. [5] MOUSAVI SAR, MAHVI AH, NASSERI S, et al.Effect of Fenton process (H2O2/Fe2+) on removal of linear alkylbenzene sulfonate (LAS) using centeral composite design and response surface methodology[J].Iran Journal of Environmental Health Science and Engineering, 2011, 8:111-116. [6] LI G, GUO S H, LI F M.Treatment of oilfield produced water by anaerobic process coupled with micro-electrolysis[J].Journal of Environmental Sciences, 2010, 22(12):1875-1882. [7] 程婷,李海松,王敏,等.铁碳微电解/H2O2耦合类Fenton法深度处理制药废水[J].环境工程学报, 2015, 9(4):1752-1756. [8] ZHOU D F, HU Y Y, GUO Q, et al.Decomplexation efficiency and mechanism of Cu (Ⅱ)-EDTA by H2O2 coupled internal micro-electrolysis process[J]. Environmental Science Pollution Research,2019, 26:1015-1025. [9] 傅强根,胡勇有.铝炭微电解处理刚果红废水的效果及脱色机理研究[J].环境科学学报, 2013, 33(6):1527-1534. [10] 于腊佳,孙岚,赖注治,等.Fe-Cu内电解处理甲基橙的谱学表征[J].环境化学, 2015, 34(5):977-982. [11] HUANG L H, SUN G P, YANG T, et al.A preliminary study of anaerobic treatment coupled with micro-electrolysis for anthraquinone dye wastewater[J].Desalination,2013, 309:91-96. [12] ZHANG S, WANG D, ZHOU L.Intensified internal electrolysis for degradation of methylene blue as model compound induced by a novel hybrid material:multi-walled carbon nanotubes immobilized on zero-valent iron plates (Fe0-CNTs)[J].Chemical Engineering Journal, 2013, 217:99-107. [13] 杨建,吴云涛,邢美燕.微电解-Fenton氧化处理难降解蒽醌染整废水试验[J].同济大学(自然科学版)2005, 33(12):1635-1640. [14] SUN Z H, XU Z H, ZHOU Y W, et al.Effects of different scrap iron as anode in Fe-C micro-electrolysis system for textile wastewater degradation[J]. Environmental Science and Pollution Research, 2019, 26:26869-26882. [15] LIN S H, CHANG C C.Treatment of landfill leachate by combined electro-Fenton oxidation and sequencing batch reactor method[J].Water Research, 2000, 34(17):4243-4249. [16] 王辉涛,吴勇,柯斌,,等.微电解集成设备预处理垃圾渗滤液[J].环境工程, 2015, 30(2):16-21. [17] 齐旭东,赵庆良,王琨,等.腐蚀电池-Fenton工艺用于垃圾渗滤液的预处理研究[J].环境科学学报, 2006, 2(1):61-69. [18] 任健,马宏瑞,马炜宁,等.Fe/C微电解-Fenton氧化-混凝沉淀-生化法处理抗生素废水的试验研究[J].水处理技术, 2011, 37(3):84-87. [19] 代晋国,宋乾武,袁芳,等.pH对电化学氧化垃圾渗滤液的影响[J].环境工程, 2012, 30(6):55-60. [20] LAI B, ZHOU Y X, YANG P, et al.Degradation of 3,3'-iminobis-propanenitrile in aqueous solution by Fe0/GAC micro-electrolysis system[J]. Chemosphere, 2013, 90(4):1470-1477. [21] KILIC MY, YONAR T, MERT B K.Landfill leachate treatment by Fenton and Fenton-like oxidation processes[J].Clean-Soil Air Water, 2014, 42(5):586-593. [22] 杨麒,刘盛,钟宇,等.Fe/C微电解-Fenton法预处理提高垃圾渗滤液可生化性的研究[J].湖南大学学报(自然科学版), 2015, 42(12):125-131. [23] 朱兆连,孙敏,杨峰,等.微电解-Fenton氧化法去除垃圾渗滤液中有机物[J].南京工业大学学报(自然科学版), 2011, 33(6):20-25. [24] 王梦璐,汪群慧,王晓娜,等.生活垃圾渗滤液脱除垃圾焚烧飞灰中氯及重金属的实验[J].环境工程, 2019, 37(9):144-148. [25] 戴红玲,刘荣荣,王少鹏,等.纳米Fe3O4强化混凝-Fenton氧化预处理垃圾渗滤液[J].环境工程, 2016, 34(7):88-92. [26] 王刚,徐晓军,杨津津,等.电解-强化微电解耦合法处理含铜废水[J].中国有色金属学报, 2013, 23(10):2936-2941. [27] 魏凯,魏刚,樊保民,等.吸附-电解协同法处理铜氨络合废水[J].北京化工大学学报(自然科学版), 2014, 41(6):52-57. [28] 李秋华,刘敏超.Fe/C复合规整型微电解材料去除废水中Ni2+的研究[J].环境工程学报, 2015, 9(11):5455-5462. [29] ZAWISZA B, SITK O, RAF A.Micro-electrodeposition in the presence of ionic liquid for the preconcentration of trace amounts of Fe, Co, Ni and Zn from aqueous samples[J].Spectrochimica Acta Part B, 2013, 82:60-64. [30] WUL M, LIAO L B, LV G C, et al.Micro-electrolysis of Cr (Ⅵ) in the nanoscale zero-valent iron loaded activated carbon[J].Journal of Hazardous Materials, 2013, 254/255:277-283. [31] DENG Y, ENGLEHARDT J D, Treatment of landfill leachate by the Fenton process[J].Water Research, 2006, 40:3683-3694. [32] CHE J G, WAN J B, HUANG X P, et al. Pretreatment of piggery digestate wastewater by ferric-carbon micro-electrolysis under alkalescence condition[J].Korean Journal of Chemical Engineering, 2017, 34(9):2397-2405.
点击查看大图
计量
- 文章访问数: 213
- HTML全文浏览量: 15
- PDF下载量: 16
- 被引次数: 0