CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同Cu负载量Cu-ZSM-5催化剂上正丁胺的选择催化氧化性能

邢欣 李娜 程杰

邢欣, 李娜, 程杰. 不同Cu负载量Cu-ZSM-5催化剂上正丁胺的选择催化氧化性能[J]. 环境工程, 2022, 40(3): 51-58. doi: 10.13205/j.hjgc.202203009
引用本文: 邢欣, 李娜, 程杰. 不同Cu负载量Cu-ZSM-5催化剂上正丁胺的选择催化氧化性能[J]. 环境工程, 2022, 40(3): 51-58. doi: 10.13205/j.hjgc.202203009
XING Xin, LI Na, CHENG Jie. SELECTIVE CATALYTIC OXIDATION PERFORMANCE OF N-BUTYLAMINE OVER Cu-ZSM-5 CATALYSTS WITH DIFFERENT COPPER LOADINGS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 51-58. doi: 10.13205/j.hjgc.202203009
Citation: XING Xin, LI Na, CHENG Jie. SELECTIVE CATALYTIC OXIDATION PERFORMANCE OF N-BUTYLAMINE OVER Cu-ZSM-5 CATALYSTS WITH DIFFERENT COPPER LOADINGS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 51-58. doi: 10.13205/j.hjgc.202203009

不同Cu负载量Cu-ZSM-5催化剂上正丁胺的选择催化氧化性能

doi: 10.13205/j.hjgc.202203009
基金项目: 

太原科技大学博士科研启动基金(20202053)

中央高校基本科研业务费专项资金

北京市科技计划课题(Z181100000118003)

详细信息
    作者简介:

    邢欣(1993-),女,讲师,主要研究方向为含氮挥发性有机污染物控制。xingxin916616@163.com

    通讯作者:

    程杰(1980-),男,教授,主要研究方向为环境材料和工业污染物催化控制的应用基础研究。jiecheng@ucas.ac.cn

SELECTIVE CATALYTIC OXIDATION PERFORMANCE OF N-BUTYLAMINE OVER Cu-ZSM-5 CATALYSTS WITH DIFFERENT COPPER LOADINGS

  • 摘要: 采用等体积浸渍法制备不同Cu负载量(1%、2%、5%和10%)的系列Cu-ZSM-5催化剂,并考察了Cu负载量对催化剂的正丁胺催化氧化性能的影响。通过XRD、N2吸脱附、EPR、H2-TPR、NH3-TPD表征方法对催化剂的晶相结构和物化性质进行表征并研究构效关系。结果表明:Cu负载量为10%的催化剂催化活性最高,在300℃下实现了正丁胺的完全转化;而Cu负载量为5%的催化剂N2选择性最佳,低温时N2选择性明显高于其他催化剂。表征结果表明,催化剂的氧化还原性能主要影响正丁胺的转化率,Cu负载量影响催化材料的氧化还原性能,Cu负载量高的催化剂氧化还原性能优异。高N2选择性主要归属于催化剂孤立态Cu2+物种和弱酸性位,催化剂的弱酸性位有利于正丁胺的吸附活化和深度氧化。
  • [1] LI S D, WANG D D, WU X F, et al. Recent advance on VOCs oxidation over layered double hydroxides derived mixed metal oxides[J]. Chinese Journal of Catalysis, 2020, 41(4):550-560.
    [2] PARMAR G R, RAO N N. Emerging control technologies for volatile organic compounds[J]. Critical Reviews in Environmental Science and Technology, 2008, 39(1):41-78.
    [3] 王海林,张国宁,聂磊,等.我国工业VOCs减排控制与管理对策研究[J].环境科学, 2011, 32(12):3462-3468.
    [4] LIOTTA L F. Catalytic oxidation of volatile organic compounds on supported noble metals[J]. Applied Catalysis B:Environmental, 2010, 100(3/4):403-412.
    [5] 李娟娟,张梦,蔡松财,等.光热催化氧化VOCs的研究进展[J].环境工程, 2020, 38(1):13-20.
    [6] HE C, CHENG J, ZHANG X, et al. Recent advances in the catalytic oxidation of volatile organic compounds:a review based on pollutant sorts and sources[J]. Chemical Reviews, 2019, 119(7):4471-4568.
    [7] SCIRÈ S, LIOTTA L F. Supported gold catalysts for the total oxidation of volatile organic compounds[J]. Applied Catalysis B:Environmental, 2012, 125:222-246.
    [8] 曹利,连子,黄学敏, MnCeOx/沸石催化剂对工业典型VOCs的催化性能[J].环境工程, 2020, 38(1):48-53.
    [9] ZHU L L, SHEN D K, LUO K H. A critical review on VOCs adsorption by different porous materials:species, mechanisms and modification methods[J]. Journal of Hazardous Materials, 2020, 389:122102.
    [10] 许子飏,莫胜鹏,付名利,等.稀土材料在挥发性有机废气降解中的应用及发展趋势[J].环境工程, 2020, 38(1):1-12

    , 36.
    [11] NANBA T, MASUKAWA S, UCHISAWA J, et al. Screening of catalysts for acrylonitrile decomposition[J]. Catalysis letters, 2004, 93:195-201.
    [12] NANBA T, MASUKAWA S, OGATA A, et al. Active sites of Cu-ZSM-5 for the decomposition of acrylonitrile[J]. Applied Catalysis B:Environmental, 2005, 61(3/4):288-296.
    [13] NANBA T, MASUKAWA S, UCHISAWA J, et al. Mechanism of acrylonitrile decomposition over Cu-ZSM-5[J]. Journal of Molecular Catalysis A:Chemical, 2007, 276(1/2):130-136.
    [14] ZHANG R D, SHI D J, LIU N, et al. Mesoporous SBA-15 promoted by 3d-transition and noble metals for catalytic combustion of acetonitrile[J]. Applied Catalysis B:Environmental, 2014, 146:79-93.
    [15] WANG Q, WANG X Q, WANG L L, et al. Catalytic oxidation and hydrolysis of HCN over LaxCuy/TiO2 catalysts at low temperatures[J]. Microporous and Mesoporous Materials, 2019, 282:260-268.
    [16] MA M D, HUANG H, CHEN C W, et al. Highly active SBA-15-confined Pd catalyst with short rod-like micro-mesoporous hybrid nanostructure for n-butylamine low-temperature destruction[J]. Molecular Catalysis, 2018, 455:192-203.
    [17] MA M D, JIAN Y F, CHEN C W, et al. Spherical-like Pd/SiO2 catalysts for n-butylamine efficient combustion:effect of support property and preparation method[J]. Catalysis Today, 2020, 339:181-191.
    [18] XING X, LI N, SUN Y G, et al. Selective catalytic oxidation of n-butylamine over Cu-zeolite catalysts[J]. Catalysis Today, 2020,339:192-199.
    [19] XING X, LI N, CHENG J, et al. Synergistic effects of Cu species and acidity of Cu-ZSM-5 on catalytic performance for selective catalytic oxidation of n-butylamine[J]. Journal of Environmental Sciences, 2020, 96:55-63.
    [20] LAI S S, MENG D M, ZHAN W C, et al. The promotional role of Ce in Cu/ZSM-5 and in situ surface reaction for selective catalytic reduction of NOx with NH3[J]. RSC Advances, 2015, 5(110):90235-90244.
    [21] XUE H Y, GUO X M, WANG S D, et al. Poisoning effect of CaO on Cu/ZSM-5 for the selective catalytic reduction of NO with NH3[J]. Catalysis Communications, 2018, 112:53-57.
    [22] NAVLANI-GARCÍA M, MARTIS M, LOZANO-CASTELLÓ, et al. Investigation of Pd nanoparticles supported on zeolites for hydrogen production from formic acid dehydrogenation[J]. Catalysis Science&Technology, 2015, 5(1):364-371.
    [23] YASHNIK S A, ISMAGILOV Z R, ANUFRIENKO V F. Catalytic properties and electronic structure of copper ions in Cu-ZSM-5[J]. Catalysis Today, 2005, 110(3/4):310-322.
    [24] YASHNIK S A, SALNIKOV A V, VASENIN N T, et al. Regulation of the copper-oxide cluster structure and DeNOx activity of Cu-ZSM-5 catalysts by variation of OH/Cu2+[J]. Catalysis Today, 2012, 197(1):214-227.
    [25] LIU X, WU X, WENG D, et al. Modification of Cu/ZSM-5 catalyst with CeO2 for selective catalytic reduction of NOx with ammonia[J]. Journal of Rare Earths, 2016, 34(10):1004-1009.
    [26] DOU B J, LV G, WANG C, et al. Cerium doped copper/ZSM-5 catalysts used for the selective catalytic reduction of nitrogen oxide with ammonia[J]. Chemical Engineering Journal, 2015, 270:549-556.
    [27] DE LA TORRE U, URRUTXUA M, PEREDA-AYO B, et al. On the Cu species in Cu/beta catalysts related to DeNOx performance of coupled NSR-SCR technology using sequential monoliths and dual-layer monolithic catalysts[J]. Catalysis Today, 2016, 273:72-82.
    [28] BLANCH-RAGA N, PALOMARES A E, MARTÍNEZ-TRIGUERO J, et al. Cu and Co modified beta zeolite catalysts for the trichloroethylene oxidation[J]. Applied Catalysis B:Environmental, 2016, 187:90-97.
    [29] HAN S, CHENG J, ZHENG C K, et al. Effect of Si/Al ratio on catalytic performance of hydrothermally aged Cu-SSZ-13 for the NH3-SCR of NO in simulated diesel exhaust[J]. Applied Surface Science, 2017, 419:382-392.
    [30] BAI Y T, WU W Y, BIAN X. Investigation of the interactions in CeO2-Fe2O3 binary metal oxides supported on ZSM-5 for NO removal by CO in the presence of O2, SO2 and steam[J]. RSC Advances, 2017, 7(89):56447-56456.
    [31] LIU J X, SONG W Y, XU C, et al. The selective catalytic reduction of NOx over a Cu/ZSM-5/SAPO-34 composite catalyst[J]. RSC Advances, 2015, 5(127):104923-104931.
    [32] HUANG Q Q, ZUO S F, ZHOU R X. Catalytic performance of pillared interlayered clays (PILCs) supported CrCe catalysts for deep oxidation of nitrogen-containing VOCs[J]. Applied Catalysis B:Environmental, 2010, 95(3/4):327-334.
  • 加载中
计量
  • 文章访问数:  239
  • HTML全文浏览量:  37
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-28
  • 网络出版日期:  2022-07-07

目录

    /

    返回文章
    返回