[1] |
西黔.西藏自治区三级城镇体系建成[J].城市规划通讯.2005(5):9-13.
|
[2] |
ZHANG Y, CARVALHO P N, LV T, et al. Microbial density and diversity in constructed wetland systems and the relation to pollutant removal efficiency[J]. Water Science&Technology, 2016, 73(3):679.
|
[3] |
SEIB M D, BERG K J, ZITOMER D H. Influent wastewater microbiota and temperature influence anaerobic membrane bioreactor microbial community[J]. Bioresource Technology, 2016, 216:446-452.
|
[4] |
OERTHER D B, III F L D L R, REYES M F D L, et al. Quantifying filamentous microorganisms in activated sludge before, during, and after an incident of foaming by oligonucleotide probe hybridizations and antibody staining[J]. Water Research, 2001, 35(14):3325-3336.
|
[5] |
SAUNDERS A M, ALBERTSEN M, VOLLERTSEN J, et al. The activated sludge ecosystem contains a core community of abundant organisms[J]. Isme Journal, 2016, 10(1):11-20.
|
[6] |
马烨姝,姚俊芹,汪溪远,等.干旱寒冷地区氧化沟工艺活性污泥的菌群结构研究[J].环境工程,2020,38(3):58-62,50.
|
[7] |
国家环境保护总局,国家质量监督检验检疫总局.城镇污水处理厂污染物排放标准:GB 18918-2002[S].北京:中国环境出版社,2002.
|
[8] |
崔迪,李昂,王继华,等.非培养技术解析生化系统微生物群落结构[J].哈尔滨工业大学学报,2011,43(10):45-49.
|
[9] |
王雨轩.基于Illumina测序的不同植被状况人工湿地土壤脱氮细菌研究[D].南京:江苏大学,2018.
|
[10] |
国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002.
|
[11] |
刘晓伟,谢丹平,李开明,等.溶解氧变化对底泥酶活性及微生物多样性的影响[J].环境科学与技术,2013,36(6):6-11.
|
[12] |
李至时,谢志平.温度对活性污泥生物种群的组成和工业废水处理效果的影响[J].建筑技术通讯(给水排水), 1982(1):42-43.
|
[13] |
YANG C, ZHANG W, LIU R H, et al. Phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale wastewater treatment plants[J]. Environmental Science&Technology, 2011, 45(17):7408-7415.
|
[14] |
LEE I S, PARAMESWARAN P, RITTMANN B E. Effects of solids retention time on methanogenesis in anaerobic digestion of thickened mixed sludge[J]. Bioresource Technology, 2011, 102(22):10266-10272.
|
[15] |
马切切,袁林江,牛泽栋,等.活性污泥微生物群落结构及与环境因素响应关系分析[J].环境科学,42(8):3886-3893.
|
[16] |
沙莎,林里,陈保卫,等.一株可降解多环芳烃的新鞘脂菌(Novosphingobium sp.)1MP25菌株:CN106190922B[P].2020-01-21.
|
[17] |
SUN Y W, FENG Z Y, TOMURA T, et al. Heterologous production of the marine myxobacterial antibiotic Haliangicin and its unnatural analogues generated by engineering of the biochemical pathway[J]. Scientific Reports, 2016, 6(1):22091.
|
[18] |
许秀红,李秀,李绍峰,等.强化生物除磷系统中聚磷菌和聚糖菌的竞争研究进展[J].化学工程师, 2017(1):44-48,43.
|
[19] |
王霖,种云霄,余光伟,等.黑臭底泥硝酸钙原位氧化的温度影响及微生物群落结构全过程分析[J].农业环境科学学报,2015,34(6):1187-1195.
|
[20] |
杨华,黄钧,赵永贵,等.陶厄氏菌Thauera sp. strain TN9的鉴定及特性[J].应用与环境生物学报,2013,19(2):318-323.
|
[21] |
鲜文东,张潇橦,李文均.绿弯菌的研究现状及展望[J].微生物学报,2020,60(9):1801-1820.
|
[22] |
XIE C H, YOKOTA A. Reclassification of[Flavobacterium] ferrugineum as Terrimonas ferruginea gen. nov. comb. nov. and description of Terrimonas lutea sp. nov. isolated from soil[J]. International Journal of Systernatic and Evolutionary Microbiology, 2006, 56(5):1117-1121.
|
[23] |
王昀璐,花日茂,唐欣昀.寡养单胞菌在环境保护中的应用研究进展[J].安徽农业科学, 2010, 38(28):15796-15797,15800.
|
[24] |
JAMES L, BARNARD, PATRICK D, et al. Rethinking the mechanisms of biological phosphorus removal[J]. Water Environment Research,2017,89(11):2043-2054.
|
[25] |
刘群芳,朱竞男,李艳红.翠湖湿地香蒲根结合细菌群落结构分析[C]//中国生态学学会.2009年中国微生物生态学年会论文集.2009:54-63.
|
[26] |
TADASHI N, TADASHI S,YUSUKE K, et al. Investigation of prospective factors that control Kouleothrix(Type 1851) filamentous bacterial abundance and their correlation with sludge settleability in full-scale wastewater treatment plants[J]. Process Safety and Environmental Protection,2019,124:137-142.
|
[27] |
刘俊新,李杰,王亚娥.铁细菌在污水除磷中的应用研究[J].环境科技,2012,25(6):61-65.
|