COMPARISON OF CHARACTERISTICS OF MICROBIAL COMMUNITY STRUCTURE IN SEWAGE TREATMENT PLANTS OF HIGH ALTITUDE AREA AND LOW ALTITUDE AREA
-
摘要: 从污水处理系统中微生物群落结构特征分析入手,利用高通量基因测序技术对高海拔地区(西藏)与低海拔地区(无锡)生活污水处理厂污泥样品中的微生物群落结构进行分析和对比。结果表明:高海拔地区各样品的Simpson指数(0.993~0.994)和Shannon指数(8.388~8.668)均高于低海拔地区的数值,但实际处理效率却低于低海拔环境。高海拔地区样品中丰度最高的菌属为Haliangium和Ferruginibacter,丰度分别为6.5%~10.3%和5.6%~6.4%,与去除水中的生化需氧量相关,而在低海拔地区样品中丰度最高的菌属为Hyphomicrobium,丰度为7.8%~11.4%,与污水处理的脱氮功能相关。在低海拔地区,具有除磷功能的聚磷假丝酵母菌(Candidatus accumulibacter)的丰度值为1.3%,但是在高海拔地区的样品中却未检测到其存在, 而是由Tetrasphaera(丰度1.2%~1.6%)和黄杆菌(Flavobacterium,丰度0.57%~0.70%)替代。环境条件的主成分分析结果表明,与高海拔地区的菌属种类分布相关性最高的环境因素为TN浓度,其次为TP、NH4+-N和DO浓度。高海拔环境下,COD和BOD5对微生物菌落分布的影响明显低于低海拔环境。Abstract: The characteristics of the microbial community structure in the sewage treatment plants in the high altitude (Tibet) and low altitude (Wuxi) areas were analyzed and compared by using the high throughput gene sequencing. The results showed that the Simpson index (0.993~0.994) and Shannon index (8.388~8.668) of each sample from high altitude area was higher than that of the low altitude area, but the actual processing efficiency was lower than that of the low altitude area. The highest abundance of bacteria in sludge of high altitude were Haliangium and Ferruginibacter, ranged from 6.5% to 10.3% and from 5.6% to 6.4%, which were associated with the removal of COD. However, the highest abundance of bacteria in the sample of low altitude area was Hyphomicrobium, and the abundance was between 7.8% and 11.4%, which was associated with the function of wastewater treatment denitrification. In low altitude area sample, Candidatus accumulibacter(with the function of phosphorus removal) was detected with an abundance of 1.3%, but not detected in high altitude area sample, replaced by the Tetrasphaera (the abundance range was between 1.2% and 1.6%) and Flavobacterium (the abundance range was between 0.57% and 0.7%). The principal component analysis (PCA) results on environmental conditions showed that the highest correlation with the distribution of bacterial species in high altitude area was the concentration of total nitrogen (TN), followed by the concentration of total phosphorus (TP), ammonia nitrogen (NH4+-N) and dissolved oxygen (DO). In high altitude area, the effects of COD and BOD5 on microbial colony distribution were significantly lower than these in low altitude area.
-
[1] 西黔.西藏自治区三级城镇体系建成[J].城市规划通讯.2005(5):9-13. [2] ZHANG Y, CARVALHO P N, LV T, et al. Microbial density and diversity in constructed wetland systems and the relation to pollutant removal efficiency[J]. Water Science&Technology, 2016, 73(3):679. [3] SEIB M D, BERG K J, ZITOMER D H. Influent wastewater microbiota and temperature influence anaerobic membrane bioreactor microbial community[J]. Bioresource Technology, 2016, 216:446-452. [4] OERTHER D B, III F L D L R, REYES M F D L, et al. Quantifying filamentous microorganisms in activated sludge before, during, and after an incident of foaming by oligonucleotide probe hybridizations and antibody staining[J]. Water Research, 2001, 35(14):3325-3336. [5] SAUNDERS A M, ALBERTSEN M, VOLLERTSEN J, et al. The activated sludge ecosystem contains a core community of abundant organisms[J]. Isme Journal, 2016, 10(1):11-20. [6] 马烨姝,姚俊芹,汪溪远,等.干旱寒冷地区氧化沟工艺活性污泥的菌群结构研究[J].环境工程,2020,38(3):58-62,50. [7] 国家环境保护总局,国家质量监督检验检疫总局.城镇污水处理厂污染物排放标准:GB 18918-2002[S].北京:中国环境出版社,2002. [8] 崔迪,李昂,王继华,等.非培养技术解析生化系统微生物群落结构[J].哈尔滨工业大学学报,2011,43(10):45-49. [9] 王雨轩.基于Illumina测序的不同植被状况人工湿地土壤脱氮细菌研究[D].南京:江苏大学,2018. [10] 国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002. [11] 刘晓伟,谢丹平,李开明,等.溶解氧变化对底泥酶活性及微生物多样性的影响[J].环境科学与技术,2013,36(6):6-11. [12] 李至时,谢志平.温度对活性污泥生物种群的组成和工业废水处理效果的影响[J].建筑技术通讯(给水排水), 1982(1):42-43. [13] YANG C, ZHANG W, LIU R H, et al. Phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale wastewater treatment plants[J]. Environmental Science&Technology, 2011, 45(17):7408-7415. [14] LEE I S, PARAMESWARAN P, RITTMANN B E. Effects of solids retention time on methanogenesis in anaerobic digestion of thickened mixed sludge[J]. Bioresource Technology, 2011, 102(22):10266-10272. [15] 马切切,袁林江,牛泽栋,等.活性污泥微生物群落结构及与环境因素响应关系分析[J].环境科学,42(8):3886-3893. [16] 沙莎,林里,陈保卫,等.一株可降解多环芳烃的新鞘脂菌(Novosphingobium sp.)1MP25菌株:CN106190922B[P].2020-01-21. [17] SUN Y W, FENG Z Y, TOMURA T, et al. Heterologous production of the marine myxobacterial antibiotic Haliangicin and its unnatural analogues generated by engineering of the biochemical pathway[J]. Scientific Reports, 2016, 6(1):22091. [18] 许秀红,李秀,李绍峰,等.强化生物除磷系统中聚磷菌和聚糖菌的竞争研究进展[J].化学工程师, 2017(1):44-48,43. [19] 王霖,种云霄,余光伟,等.黑臭底泥硝酸钙原位氧化的温度影响及微生物群落结构全过程分析[J].农业环境科学学报,2015,34(6):1187-1195. [20] 杨华,黄钧,赵永贵,等.陶厄氏菌Thauera sp. strain TN9的鉴定及特性[J].应用与环境生物学报,2013,19(2):318-323. [21] 鲜文东,张潇橦,李文均.绿弯菌的研究现状及展望[J].微生物学报,2020,60(9):1801-1820. [22] XIE C H, YOKOTA A. Reclassification of[Flavobacterium] ferrugineum as Terrimonas ferruginea gen. nov. comb. nov. and description of Terrimonas lutea sp. nov. isolated from soil[J]. International Journal of Systernatic and Evolutionary Microbiology, 2006, 56(5):1117-1121. [23] 王昀璐,花日茂,唐欣昀.寡养单胞菌在环境保护中的应用研究进展[J].安徽农业科学, 2010, 38(28):15796-15797,15800. [24] JAMES L, BARNARD, PATRICK D, et al. Rethinking the mechanisms of biological phosphorus removal[J]. Water Environment Research,2017,89(11):2043-2054. [25] 刘群芳,朱竞男,李艳红.翠湖湿地香蒲根结合细菌群落结构分析[C]//中国生态学学会.2009年中国微生物生态学年会论文集.2009:54-63. [26] TADASHI N, TADASHI S,YUSUKE K, et al. Investigation of prospective factors that control Kouleothrix(Type 1851) filamentous bacterial abundance and their correlation with sludge settleability in full-scale wastewater treatment plants[J]. Process Safety and Environmental Protection,2019,124:137-142. [27] 刘俊新,李杰,王亚娥.铁细菌在污水除磷中的应用研究[J].环境科技,2012,25(6):61-65.
点击查看大图
计量
- 文章访问数: 205
- HTML全文浏览量: 44
- PDF下载量: 8
- 被引次数: 0