CONCENTRATION CHARACTERISTICS AND POLLUTION ASSESSMENT OF HEAVY METALS IN SOIL OF A WITHDRAWAL CULTIVATED LAND IN SUBURB OF NANJING
-
摘要: 通过对比土壤背景值、筛选值,对南京城郊某典型退耕农用地45个点位深度至6 m的166个土壤样品中Cu、Ni、Cd、As、Pb、Hg、Be、Sb、Co、V 10项重金属含量特征进行分析与污染评价。结果表明:1)10种重金属含量最大值均超过背景值;Cu、Cd、As、Pb、Hg含量最大值均超过GB 15618-2018《土壤环境质量 农用地土壤污染风险管控标准》;As、Co含量最大值超过GB 36600-2018《土壤环境质量 建设用地土壤污染风险管控标准》;Cd含量变异系数最大,Hg次之;2)Hg、Cd、Pb含量最大值在上层(A或B层)的频次明显较高,As、V含量最大值在下层(C层或D层)的频次明显较高;Hg含量在最大值与中位值上均呈A层递减至D层趋势,Cd含量呈U形;3)单因子指数评价发现,Cu、Cd、As、Pb、Hg存在重度污染,污染程度大于其他重金属;内梅罗指数评价发现,对比GJA,JSA,NJ 3种背景值、NY筛选值、JSH1筛选值,评价结果分别呈70%以上各层样品为轻度污染等级,90%以上各层样品为安全等级,100%各层样品为安全等级;4)重金属相关性上,As-Sb(0.810)相关性最高,Hg与其他重金属相关性较弱;结合主成分分析,重金属主要来自自然成土过程、农业耕作类强人为源以及城郊大气沉降类弱人为源3个来源;土壤中Cu、Ni、Cd、As、Pb、Sb含量主要受成土过程影响,其次为人为源,同时Co、V基本未受人为源影响;Hg、Be含量除受成土原因影响外,受人为源影响大。Abstract: The concentration of 10 heavy metal elements (Cu, Ni, Cd, As, Pb, Hg, Be, Sb, Co, V) in the soil of a withdrawal farmland in suburb of Nanjing were analyzed and evaluated by comparing with the soil background values and risk screening values (the screening values of agricultural land and construction land). The main conclusions were as follows:1) the maximum content of the 10 heavy metals all exceed the background values. The maximum content of Cu, Cd, As, Pb and Hg exceeded the screening value of farmland. The maximum content of As and Co exceeded the screening value of construction land. The variation coefficient of Cd content was the largest and Hg was the second. 2) For the distribution characteristics of the concentration, the frequency of highest content of Hg, Cd, Pb in upper layer was higher than that in the lower layer, but As, and V was on the opposite. The content of Hg decreased from layer A to layer D in both maximum and median values, while content of Cd showed a U-shape. 3) Single factor index showed that Cu, Cd, As, Pb and Hg were heavily polluted with higher pollution degree than other heavy metals. Nemerov composite pollution index showed that more than 70% of the samples in each layer were in light pollution level, compared with the background values, more than 90% of the samples in each layer were in safe level compared with screening value of NY, and 100% of the samples in each layer were in safe level compared with JSH1. 4) As and Sb (0.810) had the highest correlation with each other, while Hg had weak correlation with other heavy metals. Combined with correlation analysis and principal component analysis, heavy metals mainly came from three sources:natural soil forming process, strong man-made sources of agricultural cultivation and weak man-made sources, like atmospheric deposition in suburban areas. The concentrations of Cu, Ni, Cd, As, Pb, Sb in soil were mainly affected by natural soil forming process firstly and then man-made sources, but Co and V were not affected by man-made sources. Hg and Be were greatly affected by man-made sources besides natural soil forming.
-
[1] 戴青青,乔伟峰,卢诚,等. 1980年以来南京市建设用地扩张阶段性特征[J].长江流域资源与环境, 2018,27(9):1928-1936. [2] 南京市统计局. 2020南京统计年鉴[M].北京:中国统计出版社, 2021. [3] 张红旗,谈明洪,孔祥斌,等.中国耕地质量的提升战略研究[J].中国工程科学, 2018,20(5):16-22. [4] 中华人民共和国环境保护部和国土资源部.全国土壤污染调查公报[EB/OL].(2014-04-17)[2021-03-20]. http://www.gov.cn/foot/2014-04/17/content_2661768.html. [5] 周江明.中国耕地重金属污染现状及其人为污染源浅析[J].中国土壤与肥料, 2020,37(2):83-92. [6] 窦韦强,安毅,秦莉,等.农田土壤重金属垂直分布迁移特征及生态风险评价[J].环境工程, 2021,39(2):166-172. [7] 王菲菲.河西走廊农田土壤重金属污染评价及源解析[D].兰州:兰州大学, 2019. [8] 徐兰,周敏,袁旭音,等.苏南区域农田土壤和大气颗粒中镉和铅含量及对水稻的贡献研究[J].生态与农村环境学报, 2018,34(3):201-206. [9] 付传城,王义勇,潘剑君,等.城乡结合带土壤重金属时空变异特征与源解析:以南京市柘塘镇为例[J].土壤学报, 2014,51(5):1066-1077. [10] 韩晓增,邹文秀,陆欣春,等.旱作土壤耕层及其肥力培育途径[J].土壤与作物, 2015(4):145-150. [11] 雷国龙,付全凯,姜林,等.基于土壤汞形态归趋的健康风险评估方法[J].环境科学研究, 2020,33(3):728-735. [12] 中华人民共和国生态环境部. HJ 25.3-2019建设用地土壤污染风险评估技术导则[S].北京:中国环境出版集团, 2019. [13] 张又文,韩建华,涂棋,等.天津市郊农田土壤重金属积累特征及评价[J].生态与农村环境学报, 2019,35(11):1445-1452. [14] 赵彦锋,史学正,于东升,等.工业型城乡交错区农业土壤Cu、Zn、Pb和Cd的空间分布及影响因素研究[J].土壤学报, 2007,44(3):227-234. [15] 李彤,吴泉源,姚磊,等.龙口市北部平原区不同土地利用类型对土壤重金属污染距离的影响[J].环境科学研究, 2019,32(7):1224-1230. [16] 张英英,施志国,李彦荣,等.不同耕作方式对民勤绿洲耕层土壤理化性状及重金属含量的影响[J].生态环境学报, 2019,28(1):207-214. [17] 仝致琦,陈太政,段海静,等.不同耕作方式对路旁土壤重金属分布的影响:以黄淮平原国道310开封段为例[J].地理科学, 2014,34(3):377-384. [18] 骆永明,周倩,章海波,等.重视土壤中微塑料污染研究防范生态与食物链风险[J].中国科学院院刊, 2018,33(10):1021-1030. [19] 陈仲文.土壤环境风险管控指标体系研究[D].济南:山东大学, 2020. [20] 生态环境部.土壤环境质量建设用地土壤污染风险管控标准(试行):GB 36600-2018[S].北京:中国环境科学出版社, 2018. [21] 生态环境部.土壤环境质量农用地土壤污染风险管控标准(试行):GB 15618-2018[S].北京:中国环境科学出版社, 2018. [22] 中国林业科学研究所.森林土壤pH值的测定:LY/T 1239-1999[S].北京:1999. [23] 中国科学院土壤背景值协作组.北京、南京地区土壤中若干元素的自然背景值[J].土壤学报, 1979,16(4):319-328. [24] 邵金秋,刘楚琛,阎秀兰,等.河北省典型污灌区农田镉污染特征及环境风险评价[J].环境科学学报, 2019,39(3):917-927. [25] 常瑛,李彦荣,施志国,等.基于内梅罗综合污染指数的农田耕层土壤重金属污染评价[J].安徽农业科学, 2019,47(19):63-67. [26] 陈雅丽,翁丽萍,马杰,等.近十年中国土壤重金属污染源解析研究进展[J].农业环境科学学报, 2019,38(10):2219-2238. [27] 陈佳林,李仁英,谢晓金,等.南京市绿地土壤重金属分布特征及其污染评价[J].环境科学, 2021,42(2):909-916. [28] 樊倍希,张永清.山西某火力发电厂周边农田土壤重金属污染评价[J].生态与农村环境学报, 2020,36(7):953-960. [29] 宋金茜,朱权,姜小三,等.基于GIS的农业土壤重金属风险评价研究:以南京市八卦洲为例[J].土壤学报, 2017,54(1):81-91. [30] 陈文轩,李茜,王珍,等.中国农田土壤重金属空间分布特征及污染评价[J].环境科学, 2020,41(6):2822-2833. [31] 孙厚云,卫晓锋,孙晓明,等.钒钛磁铁矿尾矿库复垦土地及周边土壤-玉米重金属迁移富集特征[J].环境科学, 2021,42(3):1166-1176. [32] ZHANG X Y, CHEN D M, ZHONG T Y, et al. Assessment of cadmium (Cd) concentration in arable soil in China[J]. Environmental Science and Pollution Research, 2015,22:4932-4941. [33] LIU X J, TIAN G J, JIANG D, et al. Cadmium (Cd) distribution and contamination in Chinese paddy soils on national scale[J]. Environmental Science&Pollution Research, 2016,23(18):17941-17952. [34] 孟龙,黄涂海,陈謇,等.镉污染农田土壤安全利用策略及其思考[J].浙江大学学报, 2019,45(3):263-271. [35] 廖启林,任静华,许伟伟,等.田块尺度上的农田土壤Cd污染分布不均匀性[J].土壤学报, 2019,56(6):1390-1400. [36] 王梅,黄标,孙维侠,等.强烈人为作用下城镇周围汞的空间变异及其积累迁移规律[J].土壤学报, 2011,48(3):506-515. [37] 董騄睿,胡文友,黄标,等.南京沿江典型蔬菜生产系统土壤重金属异常的源解析[J].土壤学报, 2014,51(6):1251-1261. [38] 胡孙,袁旭音,陈红燕,等.城郊农业土壤重金属不同尺度空间分布及源分析:以宁镇交界带为例[J].农业环境科学学报, 2015,34(12):2295-2303. [39] 隋传嘉.苏南村镇耕地土壤重金属空间分布及其与耕地空间格局的关系[D].南京:南京农业大学, 2017. [40] 徐蕾,肖昕,马玉.徐州农田土壤重金属空间分布及来源分析[J].生态与农村环境学报, 2019,35(11):1453-1459.[41] 刘媚媚,高凤杰,韩晶,等.黑土区小流域土壤重金属生态危害与来源解析[J].中国农业大学学报, 2020,25(11):12-21.[42] 张金兰,黄程亮,黄秋鑫,等.山地水田土壤环境质量评价及重金属来源解析[J].华南师范大学学报(自然科学版), 2020,52(3):54-61.[43] CUI J, WANG W Q, PENG Y, et al. Effects of simulated Cd deposition on soil Cd availability, microbial response, and crop Cd uptake in the passivation-remediation process of Cd-contaminated purple soil[J]. Science of the Total Environment, 2019,683:782-792.[44] 宋静,许根焰,骆永明,等.对农用地土壤环境质量类别划分的思考:以贵州马铃薯产区Cd风险管控为例[J].地学前缘, 2019,26(6):192-198.
点击查看大图
计量
- 文章访问数: 167
- HTML全文浏览量: 17
- PDF下载量: 9
- 被引次数: 0