PREPARATION OF PMo12/rGO/PPy ANODE BY ELECTRODEPOSITION FOR MICROBIAL FUEL CELLS
-
摘要: 微生物燃料电池(MFC)阳极材料的电化学特性影响其产电性能和污染物还原能力。采用电化学沉积法得到了磷钼酸/还原氧化石墨烯/聚吡咯(PMo12/rGO/PPy)阳极,并对PMo12/rGO/PPy阳极进行形貌表征和电化学特性分析,最后考察了PMo12/rGO/PPy阳极MFC在不同浓度高氯酸盐(ClO4-)下的产电和还原性能。结果表明:PMo12/rGO/PPy阳极较对照阳极为微生物的附着提供了更大的比表面积,为电子传递提供更多的活性位点;使得MFC阳极表面的电荷转移量增加493%,电荷转移阻抗降低83.3%,交换电流密度提高53.4%。同时,当ClO4-浓度为420 mg/L时,PMo12/rGO/PPy阳极MFC产电性能最好,最大输出电压可达到148.47 mV。
-
关键词:
- PMo12/rGO/PPy阳极 /
- 微生物燃料电池 /
- 电化学特性 /
- 产电 /
- 高氯酸盐
Abstract: The electrochemical characteristics of anode materials for microbial fuel cells (MFC) affect their electrical performance and pollutant reduction capacity. In this experiment, the phosphomolybdic acid/reduced graphene oxide/polypyrrole (PMo12/rGO/PPy) anode was obtained by electrochemical deposition method. Then the morphology and electrochemical characteristics of PMo12/rGO/PPy anode were analyzed. Finally, the electricity generation and reduction performance of PMo12/rGO/PPy anode MFC at different concentrations of perchlorate (ClO4-) were investigated. The results showed that the PMo12/rGO/PPy anode provided a larger specific surface area than the control for the attachment of microorganisms, thus providing more active sites for electron transport. The use of PMo12/rGO/PPy anode resulted in an increase of charge transfer amount by 493%, a decrease of charge transfer impedance by 83.3%, and an increase of exchange current density by 53.4%. At the same time, when the concentration of ClO4- was 420 mg/L, PMo12/rGO/PPy anode MFC had the best power generation performance, and the maximum output voltage reached 148.47 mV. -
[1] CHENG K, HU J P, HOU H J, et al. Aerobic granular sludge inoculated microbial fuel cells for enhanced epoxy reactive diluent wastewater treatment[J]. Bioresource Technology, 2017, 229:126-133. [2] CHEN S M, ADAM L S. Methane-driven microbial fuel cells recover energy and mitigate dissolved methane emissions from anaerobic effluents[[J]. Environmental Science:Water Research&Technology 2018, 4(1):67-79. [3] KUMAR G G, SARATHI V, NAHM K S. Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells[J]. Biosensors&Bioelectronics, 2013, 43:461-475. [4] OLIVEIRA V B, SIMES M, MELO L F, et al. Overview on the developments of microbial fuel cells[J]. Biochemical Engineering Journal, 2013, 73(8):53-64. [5] LIU J, LIU J F, HE W H, et al. Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode[J]. Journal of Power Sources, 2014, 265(1):391-396. [6] 孙扬,刘维平,徐杰.阳极改性对微生物燃料电池产电及处理废水影响[J].水处理技术,2020,46(10):39-43,49. [7] 尹虹,高媛,蔡翠霞,等.微生物燃料电池多孔阳极的制备及阳极改性研究[J].化学研究与应用,2020,32(5):803-807. [8] 贾云,綦琪,王许云.聚吡咯/碳纳米管膜阳极的制备及其在厌氧流化床微生物燃料电池中的应用[J].青岛科技大学学报(自然科学版),2017,38(2):42-47. [9] LANG X M, WAN Q Y, FENG C H, et al. The role of anthraquinone sulfonate dopants in promoting performance of polypyrrole composites as pseudo-capacitive electrode materials[J]. Synthetic Metals, 2010, 160(15/16):1800-1804. [10] LEE H, KIM H, MI S C, et al. Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications[J]. Electrochimica Acta, 2011, 56(22):7460-7466. [11] 霍庆城,黄仁亮,齐崴,等.氧化石墨烯/聚吡咯复合材料修饰阳极的制备及在MFC中的应用[J].南开大学学报(自然科学版),2016,49(5):66-73. [12] AMMAM M. Polyoxometalates:formation, structures, principal properties, main deposition methods and application in sensing[J]. Journal of Materials Chemistry A, 2013, 1(21):6291-6312. [13] WANG S S, YANG G Y. Recent advances in Polyoxometalate-catalyzed reactions[J]. Chemical Reviews, 2015, 115(11):4893-4962. [14] YI F Y, ZHU W, DANG S, et al. Polyoxometalates-based heterometallic organic-inorganic hybrid materials for rapid adsorption and selective separation of methylene blue from aqueous solutions[J]. Chemical Communications, 2015, 51(16):3336-3339. [15] ZHAO X, ZHU J B, LANG L, et al. Enhanced electroactivity of Pd nanocrystals supported on H3PMo12O40/carbon for formic acid electrooxidation[J]. Journal of Power Sources, 2012, 210:392-396. [16] XU J Y, CAO X, XIA J F, et al. Phosphomolybdic acid functionalized graphene loading copper nanoparticles modified electrodes for non-enzymatic electrochemical sensing of glucose[J]. Analytica Chimica Acta, 2016, 934:44-51. [17] GAO J, YANG T T, WANG X J, et al. Spherical phosphomolybdic acid immobilized on graphene oxide nanosheets as an efficient electrochemical sensor for detection of diphenylamine[J]. Microchemical Journal, 2020, 158:105-158. [18] LIU X X, BIAN L J, LU Z, et al. Composite films of polyaniline and molybdenum oxide formed by electrocodeposition in aqueous media[J]. Journal of Solid State Electrochemistry, 2007, 11(9):1279-1286. [19] APARICIO-ANGLÈS X, MIRÓ P, CLOTET, A, et al. Polyoxometalates adsorbed on metallic surfaces:immediate reduction of[SiW12O40]4 on Ag (100)[J]. Chemical Science, 2012, 3(6):2020-2027. [20] ZHANG H Y, MIAO A J, JIANG M. Fabrication, characterization and electrochemistry of organic-inorganic multilayer films containing polyoxometalate and polyviologen via layer-by-layer self-assembly[J]. Materials Chemistry&Physics, 2013, 141(1):482-487. [21] KERA NAZIA H, BHAUMIK M, BALLAV N, et al. Selective removal of Cr (Ⅵ) from aqueous solution by polypyrrole/2,5-diaminobenzene sulfonic acid composite[J]. Journal of Colloid and Interface Science, 2016, 476:144-157. [22] 吴敏,王帅锋,高乃云,等.生物法还原高浓度高氯酸盐动力学及反应条件的优化[J].中南大学学报(自然科学版),2016,47(11):3958-3964. [23] XIE T, YANG Q, WINKLER M K H, et al. Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor:Performance and microbial community structure[J]. Journal of Hazardous Materials, 2018, 357:244-252. [24] 王彦涛,张燕,田秀蕾,等.石墨烯-多壁碳纳米管复合材料协同刃天青修饰阳极对微生物燃料电池性能的影响[J].微生物学通报,2017,44(9):2029-2036. [25] 田秀蕾.微生物燃料电池降解高氯酸盐特性及介体调控机理研究[D].石家庄:河北科技大学,2016. [26] ZHANG J, ZHAO X S. Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes[J]. Journal of Physical Chemistry C, 2012, 116(9):5420-5426. [27] 何海波,王许云,白立俊,等.石墨烯/聚苯胺复合阳极的制备及在MFC中的应用[J].化工学报,2014,65(6):2186-2192. [28] FRICKE K, HARNISCH F, SCHRDER U. On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells[J]. Energy&Environmental Science, 2008, 1(1):144-147. [29] WU Y N, WANG L, JIN M, et al. Reduced graphene oxide and biofilms as cathode catalysts to enhance energy and metal recovery in microbial fuel cell[J]. Bioresource Technology, 2019, 283:129-137. [30] BROWNSON D, KAMPOURIS D K, BANKS C E. An overview of graphene in energy production and storage applications[J]. Journal of Power Sources, 2011, 196(11):4873-4885. [31] 蔡本慧,曹雷,王肇君.导电聚合物聚吡咯的制备、性质及其应用[J].化工科技市场,2010,33(5):11-16. [32] 丁邦琴,周杰,朱蓓蓓,等.磷钼酸/氧化石墨烯复合材料的制备及其氧化脱硫性能[J].石油化工,2017,46(10):1255-1259. [33] 单永奎,戴立益,余淑媛,等.多元多金属含氧簇合物在催化化学中的应用[J].化学进展,2003,15(2):151-160. [34] MANOHAR A K, BRETSCHGER O, NEALSON K H, et al. The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell[J]. Bioelectrochemistry, 2008, 72(2):149-154. [35] 陈忠平,褚道葆,陈君华,等.循环伏安法的电扫描方式对苯胺聚合产物形貌影响的观察[J].高分子学报,2007(6):536-540. [36] 贾云,綦琪,王许云.聚吡咯/碳纳米管膜阳极的制备及其在厌氧流化床微生物燃料电池中的应用[J].青岛科技大学学报(自然科学版),2017,38(2):42-47. [37] ZHANG L. Preparation and electrochemical properties of polyaniline/carbon nanofiber composite materials[J]. Acta Physico-Chimica Sinica, 2010, 26(12):3181-3186. [38] ZHANG X, LI K X, YAN P Y, et al. N-type Cu2O doped activated carbon as catalyst for improving power generation of air cathode microbial fuel cells[J]. Bioresource Technology, 2015, 187:299-304. [39] LIAO Z H, SUN T H SUN D Z, et al. Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells[J]. Bioresource Technology, 2015, 192:831-834. [40] MODESTRA J A, MOHAN S V. Bio-electro-catalyzed electron efflux in gram positive and gram negative bacteria:an insight into disparity in electron transfer kinetics[J]. Rsc Advances, 2014, 4(64):34045-34055. [41] 杨明,陈国美,倪自丰,等.40Cr基体表面GO/BTESPT硅烷复合膜的制备和性能表征[J].电镀与精饰,2020,42(9):16-23. [42] XU X, GAO B Y, JIN B, et al. Study of microbial perchlorate reduction:considering of multiple pH:electron acceptors and donors[J]. Journal of Hazardous. Materials, 2015, 285:228-235. [43] 程丽杰,高宁博,楚华,等.高氯酸盐还原菌的代谢过程及应用研究进展[J].化工进展,2020,39(增刊2):251-261.
点击查看大图
计量
- 文章访问数: 144
- HTML全文浏览量: 24
- PDF下载量: 4
- 被引次数: 0