中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

臭氧/陶瓷膜工艺在水处理中的研究进展

李思敏 杨辉 付玉洁 肖峰 郭建宁 林创桂

李思敏, 杨辉, 付玉洁, 肖峰, 郭建宁, 林创桂. 臭氧/陶瓷膜工艺在水处理中的研究进展[J]. 环境工程, 2022, 40(3): 212-220. doi: 10.13205/j.hjgc.202203031
引用本文: 李思敏, 杨辉, 付玉洁, 肖峰, 郭建宁, 林创桂. 臭氧/陶瓷膜工艺在水处理中的研究进展[J]. 环境工程, 2022, 40(3): 212-220. doi: 10.13205/j.hjgc.202203031
LI Simin, YANG Hui, FU Yujie, XIAO Feng, GUO Jianning, LIN Chuanggui. CURRENT KNOWLEDGE AND RESEARCHES ON OZONE/CERAMIC MEMBRANE PROCESS IN WATER TREATMENT FIELD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 212-220. doi: 10.13205/j.hjgc.202203031
Citation: LI Simin, YANG Hui, FU Yujie, XIAO Feng, GUO Jianning, LIN Chuanggui. CURRENT KNOWLEDGE AND RESEARCHES ON OZONE/CERAMIC MEMBRANE PROCESS IN WATER TREATMENT FIELD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 212-220. doi: 10.13205/j.hjgc.202203031

臭氧/陶瓷膜工艺在水处理中的研究进展

doi: 10.13205/j.hjgc.202203031
基金项目: 

深圳市科技计划项目(JCYJ20180307163205964)

广东高校省级重点平台和科研项目(2018GKTSCX065)

详细信息
    作者简介:

    李思敏(1968-),男,教授,主要研究方向为水及废水处理理论与技术。chyeli@126.com

    通讯作者:

    郭建宁(1981-),男,高级工程师,主要从事以膜为主的饮用水处理工艺研究。guojn08@163.com

CURRENT KNOWLEDGE AND RESEARCHES ON OZONE/CERAMIC MEMBRANE PROCESS IN WATER TREATMENT FIELD

  • 摘要: 臭氧/陶瓷膜组合工艺作为一种高效水处理技术,自2003年首次使用以来取得了快速发展。为进一步推动臭氧/陶瓷膜组合工艺在我国的深入研究与广泛应用,探讨了陶瓷膜对臭氧的催化机理及工艺效果。通过整理国内外近年来臭氧/陶瓷膜组合工艺在膜污染控治、污染物去除以及消毒副产物降解等方面的研究,并结合机理研究对工艺的发展方向进行了展望,指出陶瓷膜材料的制备与改性、膜孔"限域"空间的应用、臭氧曝气等将是臭氧/陶瓷膜技术的重要研究方向。
  • [1] SCHLICHTER B, MAVROV V, CHMIEL H. Study of a hybrid process combining ozonation and membrane filtration-filtration of model solutions[J].Desalination,2003,156(1):257-265.
    [2] SCHLICHTER B, MAVROV V, CHMIEL H. Study of a hybrid process combining ozonation and microfiltration/ultrafiltration for drinking water production from surface water[J].Desalination,2004,168:307-317.
    [3] KARNIK B S, DAVIES S H R, CHEN K C, et al. Effects of ozonation on the permeate flux of nanocrystalline ceramic membranes[J].Water Research,2005,39(4):728-734.
    [4] KARNIK B S, DAVIES S H, BAUMANN M J, et al. The effects of combined ozonation and filtration on disinfection by-product formation[J].Water Research,2005,39(13):2839-2850.
    [5] BYUN S, DAVIES S H, ALPATOVA A L, et al. Mn oxide coated catalytic membranes for a hybrid ozonation-membrane filtration:comparison of Ti, Fe and Mn oxide coated membranes for water quality[J].Water Research,2011,45(1):163-170.
    [6] PARK H, KIM Y, AN B, et al. Characterization of natural organic matter treated by iron oxide nanoparticle incorporated ceramic membrane-ozonation process[J].Water Research,2012,46(18):5861-5870.
    [7] ALPATOVA A L, DAVIES S H, MASTEN S J. Hybrid ozonation-ceramic membrane filtration of surface waters:the effect of water characteristics on permeate flux and the removal of DBP precursors, dicloxacillin and ceftazidime[J].Separation and Purification Technology,2013,107:179-186.
    [8] 谢宇铭,张锡辉.陶瓷膜组合工艺对水中甲硫醚去除效果研究[J].环境科学与技术,2011,34(8):131-133.
    [9] 郭建宁,张锡辉,王凌云,等.臭氧预氧化对不同孔径陶瓷膜过滤微污染饮用水的影响[J].中南大学学报(自然科学版),2013,44(9):3925-3932.
    [10] 范小江,雷颖,韦德权,等.臭氧/陶瓷膜集成工艺的饮用水安全性研究[J].中国给水排水,2014,30(15):44-49.
    [11] 张建国,盛德洋,郭建宁,等.陶瓷膜在高浊度给水处理中的试验研究[J].水处理技术,2012, 38(2):115-118.
    [12] 郭建宁,张锡辉,胡江泳,等.臭氧氧化对陶瓷膜超滤工艺降低饮用水中浊度的影响[J].环境科学学报,2013,33(4):968-975.
    [13] WANG J L, BAI Z Y. Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater[J].Chemical Engineering Journal,2017,31:79-98.
    [14] NAWAZ F, XIEY B, XIAO J D. The influence of the substituent on the phenol oxidation rate and reactive species in cubic MnO2 catalytic ozonation[J].Catalysis Science&Technology,2016:7875-7884.
    [15] WANG J L, CHEN H. Catalytic ozonation for water and wastewater treatment:recent advances and perspective[J]. Science of the Total Environment,2020,704:135249.
    [16] QI F, CHU W, XU B B. Comparison of phenacetin degradation in aqueous solutions by catalytic ozonation with CuFe2O4 and its precursor:surface properties, intermediates and reaction mechanisms[J].Chemical Engineering Journal,2016,284:28-36.
    [17] MANSAS C, MENDRET J, BROSILLON S, et al. Coupling catalytic ozonation and membrane separation:a review[J].Separation and Purification Technology,2020,236:116221.
    [18] BING J S, HU C, ZHANG L L. Enhanced mineralization of pharmaceuticals by surface oxidation over mesoporous γ-Ti-Al2O3 suspension with ozone[J].Applied Catalysis B:Environmental,2017,202:118-126.
    [19] YU D Y, WANG L P, YANG T Y, et al. Tuning Lewis acidity of iron-based metal-organic frameworks for enhanced catalytic ozonation[J].Chemical Engineering Journal,2021,404(6):127075.
    [20] AHMAD M, XIE Q, CHEN S, et al. Tuning Lewis acidity of MIL-88B-Fe with mix-valence coordinatively unsaturated iron centers on ultrathin Ti3C2 nanosheets for efficient photo-Fenton reaction[J].Applied Catalysis B:Environmental,2020,264:118534.
    [21] HUANG Y X, SUN Y R, XU Z X, et al. Removal of aqueous oxalic acid by heterogeneous catalytic ozonation with MnO<em>x/sewage sludge-derived activated carbon as catalysts[J].Science of The Total Environment,2017,575:50-57.
    [22] HUANG Y X, CUI C C, ZHANG D F, et al. Heterogeneous catalytic ozonation of dibutyl phthalate in aqueous solution in the presence of iron-loaded activated carbon[J].Chemosphere,2015,119:295-301.
    [23] RASOOL R, ALIZADEH R,Ghareshabani E. Enhanced heterogeneous catalytic ozonation of pharmaceutical pollutants using a novel nanostructure of iron-based mineral prepared via plasma technology:a comparative study[J].Journal of Hazardous Materials,2020,392:122269.
    [24] LEE W J, BAO Y P, HU X, et al. Hybrid catalytic ozonation-membrane filtration process with CeO<em>x and MnO<em>x impregnated catalytic ceramic membranes for micropollutants degradation[J].Chemical Engineering Journal,2019,378:121670.
    [25] CHEN G, ZHU X, CHEN R, et al. Gas-liquid-solid monolithic microreactor with Pd nanocatalyst coated on polydopamine modified nickel foam for nitrobenzene hydrogenation[J].Chemical Engineering Journal, 2018, 334:1897-1904.
    [26] FENG H, ZHU X, CHEN R, et al. High-performance gas-liquid-solid microreactor with polydopamine functionalized surface coated by Pd nanocatalyst for nitrobenzene hydrogenation[J]. Chemical Engineering Journal, 2016,306:1017-1025.
    [27] FREEMAN S, SHORNEY-DARBY H. What's the buzz about ceramic membranes?[J]. Journal American Water Works Association,2011,103(12):12-13.
    [28] MENG L, GUO H Z, DONG Z Y, et al. Ceramic hollow fiber membrane distributor for heterogeneous catalysis:effects of membrane structure and operating conditions[J].Chemical Engineering Journal,2013,223:356-363.
    [29] WATTS P, WILES C. Recent advances in synthetic micro reaction technology[J].Chemical Communications,2007(5):443-467.
    [30] CHEN Y Q, YIN S, LI Y L, et al. Curvature dependence of single-walled carbon nanotubes for SO2 adsorption and oxidation[J].Applied Surface Science,2017,404:364-369.
    [31] PANIĆ S, KUKOVECZ Á, BOSKOVIC G. Design of catalytic carbon nanotube-based reactor for water denitration:the impact of active metal confinement[J]. Applied Catalysis B:Environmental,2018,225:207-217.
    [32] ZHANG S, QUAN X, WANG D. Catalytic ozonation in arrayed zinc oxide nanotubes as highly efficient mini-column catalyst reactors (MCRs):augmentation of hydroxyl radical exposure[J].Environmental Science&Technology,2018, 52(15):8701-8711.
    [33] LIN J Y, CHEN S, XIAO H Y, et al. Ultra-efficient and stable heterogeneous iron-based Fenton nanocatalysts for degrading organic dyes at neutral pH via a chelating effect under nanoconfinement[J].Chemical Communications,2020,56:6571-6574.
    [34] ZHANG S, HEDTKE T, ZHOU X C, et al. Environmental applications of engineered materials with nanoconfinement[J].ACS ES&T engineering,2021.
    [35] CHOI H, AL-ABED S R, AGARWAL S, et al. Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs[J].Chemistry of Materials,2008,20(11):3649-3655.
    [36] ZHANG S, SUN M, HEDTKE T, et al. Mechanism of heterogeneous fenton reaction kinetics enhancement under nanoscale spatial confinement[J]. Environmental Science&Technology,2020,54(17):10868-10875.
    [37] LAVERNE J A. The production of OH radicals in the radiolysis of water with 4He ions[J]. Radiation research,1989,118(2):201-210.
    [38] CHEN Y, ZHANG G, LIU H J, et al. Confining free radicals in close vicinity to contaminants enables ultrafast Fenton-like processes in the interspacing of MoS2 membranes[J].Angewandte Chemie International Edition,2019,58(24):8134-8138.
    [39] 鄢忠森,瞿芳术,梁恒,等.超滤膜污染以及膜前预处理技术研究进展[J].膜科学与技术,2014, 34(4):108-114

    ,127.
    [40] HER N, AMY G, FOSS D, et al. Optimization of method for detecting and characterizing NOM by HPLC-size exclusion chromatography with UV and on-line dOC Detection[J]. Environmental Science&Technology,2002,36(5):1069-1076.
    [41] TIAN J Y, WU C W, YU H R, et al. Applying ultraviolet/persulfate (UV/PS) pre-oxidation for controlling ultrafiltration membrane fouling by natural organic matter (NOM) in surface water[J].Water Research,2018,132:190-199.
    [42] BOKSOON K, PARK N, JAEWEON C. Effect of algae on fouling and efficiency of UF membranes[J].Desalination,2004, 179(1):203-214.
    [43] SONG Z L, LI Y N, WANG Z, et al. Effect of the coupling modes on EfOM degradation and fouling mitigation in ozonation-ceramic membrane filtration[J].Chemical Engineering Journal,2020,394:124935.
    [44] YIN Z L, WEN T C, LI Y, et al. Alleviating reverse osmosis membrane fouling caused by biopolymers using pre-ozonation[J]. Journal of Membrane Science,2020,595:117546.
    [45] YIN Z L,WEN T C, LI Y, et al. Pre-ozonation for the mitigation of reverse osmosis (RO) membrane fouling by biopolymer:the roles of Ca2+ and Mg2+[J].Water Research,2020,171:115437.
    [46] SONG J, ZHANG Z H, ZHANG X H. A comparative study of pre-ozonation and in-situ ozonation on mitigation of ceramic UF membrane fouling caused by alginate[J].Journal of Membrane Science,2017,538:50-57.
    [47] 关羽琪,王凯伦,祝学东,等.臭氧-CNT膜改性联用工艺对PVDF中空纤维膜污染进程的缓解[J].环境科学,2018, 39(8):3744-3752.
    [48] ASIF M B, LI C Y, REN B Y, et al. Elucidating the impacts of intermittent in-situ ozonation in a ceramic membrane bioreactor:micropollutant removal, microbial community evolution and fouling mechanisms[J].Journal of Hazardous Materials,2021, 402:123730.
    [49] LI F, CHEN J, DENG C. The kinetics of crossflow dynamic membrane bioreactor[J].Water SA,2006,32(2):199-203.
    [50] SUN H F, LIU H, HAN J R, et al. Chemical cleaning-associated generation of dissolved organic matter and halogenated byproducts in ceramic MBR:ozone versus hypochlorite[J].Water Research,2018,140:243-250.
    [51] SUN H F, LIU H, WANG S Y, et al. Ceramic membrane fouling by dissolved organic matter generated during on-line chemical cleaning with ozone in MBR[J]. Water Research,2018,146:328-336.
    [52] POLLICE A, LAERA G, CASSANO D, et al. Removal of nalidixic acid and its degradation products by an integrated MBR-ozonation system[J].Journal of Hazardous Materials,2012, 203:46-52.
    [53] TANG S Y, LI J Y, ZHANG Z H, et al. Comparison of long-term ceramic membrane bioreactors without and with in-situ ozonation in wastewater treatment:membrane fouling, effluent quality and microbial community[J].Science of the Total Environment,2019,652:788-799.
    [54] SEMBLANTE G S, HAI F I, DIONYSIOS D D, et al. Holistic sludge management through ozonation:a critical review[J]. Journal of Environmental Management,2017,185:79-95.
    [55] GUO Y, SONG Z L, XU B B, et al. A novel catalytic ceramic membrane fabricated with CuMn2O4 particles for emerging UV absorbers degradation from aqueous and membrane fouling elimination[J].Journal of Hazardous Materials,2018,344:1229-1239.
    [56] CHEN S, YU J Q, WANG H, et al. A pilot-scale coupling catalytic ozonation-membrane filtration system for recirculating aquaculture wastewater treatment[J].Desalination,2015,363:37-43.
    [57] KUKUZAKI M, FUJIMOTO K, KAI S, et al. Ozone mass transfer in an ozone-water contacting process with Shirasu porous glass (SPG) membranes-A comparative study of hydrophilic and hydrophobic membranes[J].Separation and Purification Technology,2010,72(3):347-356.
    [58] SONG Z L, SUN J Y, WANG W H, et al. Stable synergistic decontamination and self-cleaning performance of powerful N-rGO catalytic ozonation membrane:clustering effect of free electrons and role of interface properties[J].Applied Catalysis B:Environmental,2021,283:119662.
    [59] STYLIANOU S K, SKLARI S D, ZAMBOULIS D, et al. Development of bubble-less ozonation and membrane filtration process for the treatment of contaminated water[J].Journal of Membrane Science,2015,492:40-47.
    [60] ZHANG J L, YU H T, QUAN X, et al. Ceramic membrane separation coupled with catalytic ozonation for tertiary treatment of dyestuff wastewater in a pilot-scale study[J].Chemical Engineering Journal,2016,301:19-26.
    [61] ZHU Y Q, CHEN S, QUAN X, et al. Hierarchical porous ceramic membrane with energetic ozonation capability for enhancing water treatment[J].Journal of Membrane Science,2013,431:197-204.
    [62] ZHU B, HU Y X, KENNEDY S, et al. Dual function filtration and catalytic breakdown of organic pollutants in wastewater using ozonation with titania and alumina membranes[J]. Journal of Membrane Science,2011,378(1):61-72.
    [63] IM D, NAKADA N, KATO Y, et al. Pretreatment of ceramic membrane microfiltration in wastewater reuse:a comparison between ozonation and coagulation[J].Journal of Environmental Management,2019,251:109555.
    [64] CHEN C J,FANG P Y, CHEN F. Permeate flux recovery of ceramic membrane using TiO2 with catalytic ozonation[J].Ceramics International,2017,43:S758-S764.
    [65] ZHANG K, ZHANG Z Z,WANG H, et al. Synergistic effects of combining ozonation, ceramic membrane filtration and biologically active carbon filtration for wastewater reclamation[J].Journal of Hazardous Materials,2020,382:121091.
    [66] HAMID K I A, SANCIOLO P,GRAY S, et al. Impact of ozonation and biological activated carbon filtration on ceramic membrane fouling[J].Water Research,2017,126:308.
    [67] WEI D Q, TAO Y T, ZHANG Z H, et al. Effect of in-situ ozonation on ceramic UF membrane fouling mitigation in algal-rich water treatment[J].Journal of Membrane Science,2016, 498:116-124.
    [68] GUO J N, HU J Y, TAO Y, et al. Effect of ozone on the performance of a hybrid ceramic membrane-biological activated carbon process[J].Journal of Environmental Sciences,2014,26(4):783-791.
    [69] 刘治界,杨春鹏,秦冰.陶瓷膜催化臭氧氧化处理苯酚模拟水的研究[J].石油炼制与化工,2020, 51(2):93-97.
    [70] 王卓,袁骋,程延峰,等.臭氧氧化耦合陶瓷膜过滤处理煤制气废水研究[J].水处理技术,2019,45(2):82-86.
    [71] 陈天翼,李根,王卓,等.粉末活性炭-陶瓷膜臭氧催化氧化深度处理煤气化废水研究[J].水处理技术,2018,44(2):80-83

    , 99.
    [72] 李博文,李响,周丽,等.臭氧陶瓷膜工艺处理微污染原水效果与膜污染研究[J].水处理技术,2018,44(1):114-117.
    [73] GRESS J, OLIVEIRA D L M, SILVA D E B, et al. Cleaning-induced arsenic mobilization and chromium oxidation from CCA-wood deck:potential risk to children[J].Environment International,2015,82:35-40.
    [74] YUSOF M S M, OTHMAN M H Z, WAHAB R A, et al. Effects of pre and post-ozonation on POFA hollow fibre ceramic adsorptive membrane for arsenic removal in water[J].Journal of the Taiwan Institute of Chemical Engineers,2020,110:100-111.
    [75] PARK H, CHOI H. As (Ⅲ) removal by hybrid reactive membrane process combined with ozonation[J].Water Research,2011, 45(5):1933-1940.
    [76] KUROKAWA Y, MAEKAWA A, TAKAHASHI M, et al. Toxicity and carcinogenicity of potassium bromate-a new renal carcinogen[J]. Environmental Health Perspectives,1990,87:309-335.
    [77] GUNTEN U V. Ozonation of drinking water:Part Ⅱ. Disinfection and by-product formation in presence of bromide, iodide or chlorine[J].Water Research,2003,37(7):1469-1487.
    [78] WEI K J, ZHUO W, OUYANG C P, et al. A hybrid fluidized-bed reactor (HFBR) based on arrayed ceramic membranes (ACMs) coupled with powdered activated carbon (PAC) for efficient catalytic ozonation:a comprehensive study on a pilot scale[J]. Water Research,2020,173:115536.
    [79] MOSLEMI M, DAVIES S H, MASTEN S J. Empirical modeling of bromate formation during drinking water treatment using hybrid ozonation membrane filtration[J].Desalination,2012,292:113-118.
    [80] HAMID K I A, SCALES P J, ALLARD S, et al. Ozone combined with ceramic membranes for water treatment:Impact on HO radical formation and mitigation of bromate[J].Journal of Environmental Management,2020,253:109655.
    [81] LIU J, HE K Y, ZHANG J X, et al. Coupling ferrate pretreatment and in-situ ozonation/ceramic membrane filtration for wastewater reclamation:water quality and membrane fouling[J].Journal of Membrane Science,2019,590:117310.
    [82] CHO Y H,JEONG S M,KIM S J,et al. Sacrificial graphene oxide interlayer for highly permeable ceramic thin film composite membranes[J].Journal of Membrane Science,2021,618:118442.
    [83] OUADDARI H, KARIM A, ACHIOU B, et al. New low-cost ultrafiltration membrane made from purified natural clays for direct Red 80 dye removal[J].Journal of Environmental Chemical Engineering,2019,7(4):103268.
    [84] XIA Z R, HU L M. Treatment of organics contaminated wastewater by ozone micro-nano-bubbles[J].Water,2019, 11:55.
    [85] JOTHINATHAN L, CAI Q Q, ONG S L, et al. Organics removal in high strength petrochemical wastewater with combined microbubble-catalytic ozonation process[J].Chemosphere,2021,263:127980.
  • 加载中
计量
  • 文章访问数:  180
  • HTML全文浏览量:  36
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-21
  • 网络出版日期:  2022-07-07

目录

    /

    返回文章
    返回