中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高铁酸盐对微生物的灭活特性及影响因素

毛宇 陈卓 陆韻 吴乾元 巫寅虎 胡洪营

董金池, 汪旭颖, 蔡博峰, 王金南, 刘惠, 杨璐, 夏楚瑜, 雷宇. 中国钢铁行业CO2减排技术及成本研究[J]. 环境工程, 2021, 39(10): 23-31,40. doi: 10.13205/j.hjgc.202110004
引用本文: 毛宇, 陈卓, 陆韻, 吴乾元, 巫寅虎, 胡洪营. 高铁酸盐对微生物的灭活特性及影响因素[J]. 环境工程, 2022, 40(4): 1-7. doi: 10.13205/j.hjgc.202204001
DONG Jin-chi, WANG Xu-ying, CAI Bo-feng, WANG Jin-nan, LIU Hui, YANG Lu, XIA Chu-yu, LEI Yu. MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST FOR IRON AND STEEL INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 23-31,40. doi: 10.13205/j.hjgc.202110004
Citation: MAO Yu, CHEN Zhuo, LU Yun, WU Qianyuan, WU Yinhu, HU Hongying. ADVANCES IN MICROBIAL INACTIVATION BY FERRATE AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 1-7. doi: 10.13205/j.hjgc.202204001

高铁酸盐对微生物的灭活特性及影响因素

doi: 10.13205/j.hjgc.202204001
基金项目: 

国家自然科学基金重点项目(51738005)

国家自然科学基金重大项目(52091541)

详细信息
    作者简介:

    毛宇(1998-),男,博士研究生,主要研究方向为再生水高铁酸盐消毒。mao-y18@mails.tsinghua.edu.cn

    通讯作者:

    陈卓(1988-),女,助理研究员,主要研究方向为再生水微生物风险控制。zhuochen@mail.tsinghua.edu.cn

    胡洪营(1963-),男,教授,主要研究方向为再生水安全高效利用理论与技术。hyhu@tsinghua.edu.cn

ADVANCES IN MICROBIAL INACTIVATION BY FERRATE AND ITS INFLUENCING FACTORS

  • 摘要: 高铁酸盐是一种集氧化、消毒和絮凝等多功能于一体的水处理剂,具有广阔的应用前景。综述了高铁酸盐在消毒方面的研究进展,包括高铁酸盐对细菌和病毒的灭活特性及影响消毒效果的主要因素,并将高铁酸盐与氯、臭氧等常规消毒技术在消毒效果、消毒机理、消毒副产物生成量等方面进行了详细比较。高铁酸盐在较宽的pH范围内对不同水体中的细菌和病毒均呈现较好的灭活效果,pH、温度和有机物是影响高铁酸盐消毒效果的重要因素,高铁酸盐和其他消毒技术联用将是未来研究的关注点。
  • [1] WOOD R H. The heat, free energy and entropy of the ferrate (Ⅵ) ion[J]. Journal of the American Chemical Society, 1958, 80(9):2038-2041.
    [2] 邵彬彬,乔俊莲,赵志伟,等.基于高铁酸盐的水污染控制技术研究进展[J].科学通报,2019,64(33):3401-3411.
    [3] SHARMA V K, ZBORIL R, VARMA R S. Ferrates:greener oxidants with multimodal action in water treatment technologies[J]. Accounts of Chemical Research, 2015, 48(2):182-191.
    [4] MURMANN R K, ROBINSON P R. Experiments utilizing FeO42- for purifying water[J]. Water Research, 1974, 8(8):543-547.
    [5] 中华人民共和国卫生部,中国国家标准化管理委员会.生活饮用水卫生标准:GB 5749-2006[S].
    [6] JESSEN A, RANDALL A, REINHART D, et al. Effectiveness and kinetics of ferrate as a disinfectant for ballast water[J]. Water Environment Research, 2008, 80(6):561-569.
    [7] DAER S, GOODWILL J E, IKUMA K. Effect of ferrate and monochloramine disinfection on the physiological and transcriptomic response of Escherichia coli at late stationary phase[J]. Water Research, 2021, 189:116580.
    [8] BANDALA E R, MIRANDA J, BELTRAN M, et al. Wastewater disinfection and organic matter removal using ferrate (Ⅵ) oxidation[J]. Journal of Water and Health, 2009, 7(3):507-513.
    [9] JIANG J Q, PANAGOULOPOULOS A, BAUER M, et al. The application of potassium ferrate for sewage treatment[J]. Journal of Environmental Management, 2006, 79(2):215-220.
    [10] FRANKLIN G S. Novel Iron Precipitates[D]. London:Imperial College, 1998.
    [11] GOMBOS E, FELFOLDI T, BARKACS K, et al. Ferrate treatment for inactivation of bacterial community in municipal secondary effluent[J]. Bioresource Technology, 2012, 107:116-121.
    [12] MAKKY E A, PARK G S, CHOI I W, et al. Comparison of Fe (Ⅵ)(FeO42-) and ozone in inactivating Bacillus subtilis spores[J]. Chemosphere, 2011, 83(9):1228-1233.
    [13] GILBERT M B, WAITE T D, HARE C. Analytical notes:an investigation of the applicability of ferrate ion for disinfection[J]. Journal-American Water Works Association, 1976, 68(9):495-497.
    [14] CHO M, LEE Y, CHOI W, et al. Study on Fe (Ⅵ) species as a disinfectant:quantitative evaluation and modeling for inactivating Escherichia coli[J]. Water Research, 2006, 40(19):3580-3586.
    [15] JIANG J Q, WANG S, PANAGOULOPOULOS A. The role of potassium ferrate (Ⅵ) in the inactivation of Escherichia coli and in the reduction of COD for water remediation[J]. Desalination, 2007, 210(1/2/3):266-273.
    [16] ZHANG H Q, ZHENG L, LI Z, et al. One-step Ferrate (Ⅵ) treatment as a core process for alternative drinking water treatment[J]. Chemosphere, 2020, 242:125134.
    [17] KWON J H, KIM I K, PARK K Y, et al. Removal of phosphorus and coliforms from secondary effluent using ferrate (Ⅵ)[J]. KSCE Journal of Civil Engineering, 2014, 18(1):81-85.
    [18] ZHENG L, FENG H, LIU Y Q, et al. Chemically enhanced primary treatment of municipal wastewater with ferrate (Ⅵ)[J]. Water Environment Research, 2021, 93:817-825.
    [19] YUAN Z H, GUI H R, HE W L, et al. Bactericidal capability of potassium ferrate and its influencing factors in the process of treating micro-polluted water[C]//20093rd International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2009:1-4.
    [20] MANOLI K, MAFFETTONE R, SHARMA V K, et al. Inactivation of murine norovirus and fecal coliforms by ferrate (Ⅵ) in secondary effluent wastewater[J]. Environmental Science&Technology, 2020, 54(3):1878-1888.
    [21] SCHINK T, WAITE T D. Inactivation of f2 virus with ferrate (Ⅵ)[J]. Water Research, 1980, 14(12):1705-1717.
    [22] KAZAMA F. Inactivation of coliphage Qβ by potassium ferrate[J]. FEMS Microbiology Letters, 1994, 118(3):345-349.
    [23] HU L H, PAGE M A, SIGSTAM T, et al. Inactivation of bacteriophage MS2 with potassium ferrate (Ⅵ)[J]. Environmental Science&Technology, 2012, 46(21):12079-12087.
    [24] WU X Y, TANG A X, BI X C, et al. Influence of algal organic matter of Microcystis aeruginosa on ferrate decay and MS2 bacteriophage inactivation[J]. Chemosphere, 2019, 236:124727.
    [25] WANG S C, SHAO B B, QIAO J L, et al. Application of Fe (Ⅵ) in abating contaminants in water:state of art and knowledge gaps[J]. Frontiers of Environmental Science&Engineering, 2021, 15(5):1-21.
    [26] KAMACHI T, KOUNO T, YOSHIZAWA K. Participation of multioxidants in the pH dependence of the reactivity of ferrate (Ⅵ)[J]. The Journal of Organic Chemistry, 2005, 70(11):4380-4388.
    [27] MANOLI K, NAKHLA G, RAY A K, et al. Enhanced oxidative transformation of organic contaminants by activation of ferrate (Ⅵ):possible involvement of Fe (Ⅴ)/Fe (Ⅳ) species[J]. Chemical Engineering Journal, 2017, 307:513-517.
    [28] DENG Y, JUNG C, LIANG Y M, et al. Ferrate (Ⅵ) decomposition in water in the absence and presence of natural organic matter (NOM)[J]. Chemical Engineering Journal, 2018, 334:2335-2342.
    [29] WANG Y H, WU Y H, TONG X, et al. Chlorine disinfection significantly aggravated the biofouling of reverse osmosis membrane used for municipal wastewater reclamation[J]. Water Research, 2019, 154:246-257.
    [30] JIANG J Q. Research progress in the use of ferrate (Ⅵ) for the environmental remediation[J]. Journal of Hazardous Materials, 2007, 146(3):617-623.
    [31] DELUCA S J, CHAO A C, SMALLWOOD JR C. Ames test of ferrate treated water[J]. Journal of Environmental Engineering, 1983, 109(5):1159-1167.
    [32] LI C, DONG F L, FENG L, et al. Bacterial community structure and microorganism inactivation following water treatment with ferrate (Ⅵ) or chlorine[J]. Environmental Chemistry Letters, 2017, 15(3):525-530.
    [33] DRIEDGER A M, RENNECKER J L, MARINAS B J. Sequential inactivation of Cryptosporidium parvum oocysts with ozone and free chlorine[J]. Water Research, 2000, 34(14):3591-3597.
    [34] HUNT N K, MARINAS B J. Inactivation of Escherichia coli with ozone:chemical and inactivation kinetics[J]. Water Research, 1999, 33(11):2633-2641.
    [35] HUANG X, DENG Y, LIU S, et al. Formation of bromate during ferrate (Ⅵ) oxidation of bromide in water[J]. Chemosphere, 2016, 155:528-533.
    [36] ROUGE V, VON GUNTEN U, DE SENTENAC M L, et al. Comparison of the impact of ozone, chlorine dioxide, ferrate and permanganate pre-oxidation on organic disinfection byproduct formation during post-chlorination[J]. Environmental Science:Water Research&Technology, 2020, 6(9):2382-2395.
    [37] LIU J Q, LUJAN H, DHUNGANA B, et al. Ferrate (Ⅵ) pretreatment before disinfection:an effective approach to controlling unsaturated and aromatic halo-disinfection byproducts in chlorinated and chloraminated drinking waters[J]. Environment International, 2020, 138:105641.
    [38] JIANG Y J, GOODWILL J E, TOBIASON J E, et al. Comparison of ferrate and ozone pre-oxidation on disinfection byproduct formation from chlorination and chloramination[J]. Water Research, 2019, 156:110-124.
  • 期刊类型引用(13)

    1. 肖保正. 对钢厂活性焦解析烟气制酸净化系统设计的探讨. 硫酸工业. 2025(01): 32-35+42 . 百度学术
    2. 邢相栋,王宇星,郑建潞,惠佳豪,吕明. TiO_2对含氯高炉渣黏度和热力学性质的影响. 钢铁研究学报. 2024(01): 13-21 . 百度学术
    3. 温慧敏,裴永彪,郭燕,鲍卫仁,廖俊杰. 羰基硫水解催化剂最新研究进展. 应用化工. 2024(02): 386-391+397 . 百度学术
    4. 俞彩孟,张东明,李梦圆,严坤,杨晨,吕洪炳,田金平,陈亚林,陈吕军. 印染污泥焚烧过程氯元素代谢及调控. 环境工程学报. 2024(08): 2311-2318 . 百度学术
    5. 梁宝瑞,马梦莹,苏伟,李伟,侯长江,汪群慧. SO_2对HCl在Ca(OH)_2表面脱除的影响. 环境工程. 2024(09): 222-228 . 本站查看
    6. 郑忆南,马飞跃. 转底炉处理冶金尘泥的分析检测工艺设计及试验室建设. 工业加热. 2024(12): 6-9+13 . 百度学术
    7. 李潇娜,高岩,李新怀,李小定,章小林. 非贵金属抗氯催化剂的研究进展. 煤化工. 2024(06): 89-94 . 百度学术
    8. 刘晓刚,易海涛. 双碳背景下钢铁企业超低排放改造中的几个问题及对策建议. 四川环境. 2023(02): 288-293 . 百度学术
    9. 蒋心泰,鲁逢霖,施煌禹,王翠,张建良. 酒钢铁前系统氯元素迁移行为. 钢铁. 2023(06): 53-60 . 百度学术
    10. 曹强,李玉然,王斌,王建成,朱廷钰. γ-Al_2O_3基COS水解催化剂在含HCl气氛的失活机理. 环境工程. 2023(12): 182-189 . 本站查看
    11. 周云花,王晓龙,甘敏,范晓慧,赵改革,汤乐云,何向宁. 铁矿烧结过程氯的反应行为及脱除规律. 烧结球团. 2022(04): 1-8 . 百度学术
    12. 平晓东,王锋,王海风. 高炉喷吹垃圾焚烧飞灰预处理工艺分析. 中国冶金. 2022(10): 121-128 . 百度学术
    13. 刘艳敏,辛渊,李保良,贾宪,耿军亮,贾玉波. 氯元素对高炉煤气管道的腐蚀与预防. 天津冶金. 2022(05): 8-10+14 . 百度学术

    其他类型引用(5)

  • 加载中
计量
  • 文章访问数:  315
  • HTML全文浏览量:  75
  • PDF下载量:  11
  • 被引次数: 18
出版历程
  • 收稿日期:  2021-07-10
  • 网络出版日期:  2022-07-06

目录

    /

    返回文章
    返回