DEGRADATION OF RHODAMINE B IN WATER BY PMS ACTIVATED BY CoMn@AC
-
摘要: 通过浸渍合成复合催化材料CoMn@AC,用于催化过一硫酸氢盐(PMS)产生自由基对罗丹明B(RhB)进行降解。采用扫描电子显微镜(SEM)、比表面及孔径分析仪(BET)等对其进行表征。考察了催化剂负载量、PMS投加量、pH以及温度等因素对RhB降解的影响。结果表明:当Co负载量为7%且n(Co)∶n(Mn)为5∶1时,合成的复合材料CoMn@AC7-5∶1对100 mL浓度为50 mg/L的RhB降解效果可达到84.2%;在pH为4~10,反应温度为25 ℃,PMS浓度为0.250 mmol/L时,4 h内对RhB的去除率可达84.2%;猝灭研究表明,硫酸根自由基(SO-4·)在反应过程中起主要作用;此外,CoMn@AC/PMS体系对RhB的降解效率随温度的升高而显著加快,其降解活化能为29.80 kJ/mol。Abstract: With Rhodamine B as the target pollutant, the composite catalytic material CoMn@AC was used to catalyze potassium monopersulfate (PMS) to generate SO-4· for the degradation of Rhodamine B (RhB). Then the composite material was characterized by scanning electron microscopy (SEM), specific surface and aperture analyzer(BET) and other means. The effects of catalyst loading, PMS dosage, pH and reaction temperature on the RhB degradation efficiency were investigated. The results showed that when the RhB at a concentration of 50 mg/L in 100 mL, the Co loading was 7% and the cobalt-manganese ion molar ratio was 5∶1, the composite material CoMn@AC7-5∶1 had better degradation efficiency; when the pH was in the range of 4~10, the reaction temperature was 25 ℃, and the PMS concentration was 0.250 mmol/L, the target pollutant could be removed effectively. In addition, the degradation of RhB by the CoMn@AC/PMS system accelerated significantly with the increase of temperature, and its degradation activation energy was 29.80 kJ/mol.
-
Key words:
- CoMn@AC /
- potassium monopersulfate /
- rhodamine B /
- catalytic activation
-
[1] 史欢欢,赵建海,李海燕,等.活性炭负载二氧化锰的制备及其对罗丹明B吸附效能[J].环境工程,2017,35(9):58-63. [2] XUE F F, TANG B, BIN L Y, et al. Residual micro organic pollutants and their biotoxicity of the effluent from the typical textile wastewater treatment plants at Pearl River Delta[J]. Science of the Total Environment, 2019, 657:696-703. [3] 唐嘉丽,岳秀,于广平,等.双氧水协同生化法处理实际印染废水[J].环境工程学报,2018,12(7):1942-1950. [4] 李欣珏,钱飞跃,李暮,等.活性炭吸附对印染废水生化出水中不同种类有机物的去除效果[J].环境化学,2012,28(3):369-372. [5] BADDOUH A, BESSEGATO G G, RGUITI M M, et al. Electrochemical decolorization of Rhodamine B dye:influence of anode material, chloride concentration and current density[J]. Journal of Environmental Chemical Engineering, 2018, 6(2):2041-2047. [6] DONG B, CHEN H Y, YANG Y, et al. Treatment of printing and dyeing wastewater using MBBR followed by membrane separation process[J]. Desalination and Water Treatment, 2014, 52(22/23/24):4562-4567. [7] 李光明,邱珊,马放.均相与非均相超声-芬顿催化降解水中罗丹明B[J].水处理技术,2020,46(5):19-23. [8] 冯勇,吴德礼,马鲁铭.黄铁矿催化类Fenton反应处理阳离子红X-GRL废水[J].中国环境科学,2012,32(6):1011-1017. [9] 贾胜娟,杨春风,赵东胜. Fenton氧化技术在废水处理中的研究与应用进展[J].工业水处理,2008,28(10):5-9. [10] WANG J J, DING Y L, TONG S P. Fe-Ag/GAC catalytic persulfate to degrade Acid Red 73[J]. Separation and Purification Technology, 2017, 184:365-373. [11] HUANG T Y, CHEN J B, WANG Z M, et al. Excellent performance of cobalt-impregnated activated carbon in peroxymonosulfate activation for acid orange 7 oxidation[J]. Environmental Science and Pollution Research, 2017, 24(10):9651-9661. [12] 翟俊,柳沛松,赵聚姣.过一硫酸盐碱催化处理染料废水[J].中国环境科学,2020,40(2):647-652. [13] ZHANG L S, YANG X J, ERFEN H, et al. Reduced graphene oxide wrapped Fe3O4-Co3O4 yolk-shell nanostructures for advanced catalytic oxidation based on sulfate radicals[J]. Applied Surface Science, 2017, 396:945-954. [14] 董正玉,吴丽颖,王霁.等.新型Fe3O4@α-MnO2活化过一硫酸盐降解水中偶氮染料[J].中国环境科学,2018,38(8):205-212. [15] ZOU J, MA J, CHEN L W, et al. Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe (Ⅲ)/Fe (Ⅱ) cycle with hydroxylamine[J]. Environmental Science&Technology, 2013, 47(20):11685-11691. [16] CAI C, WANG L G, GAO H, et al. Ultrasound enhanced heterogeneous activation of peroxydisulfate by bimetallic Fe-Co/GAC catalyst for the degradation of Acid Orange 7 in water[J].Journal of Environmental Sciences, 2014, 26(6):1267-1273. [17] ANIPSTAKISI G P, DIONYSIOU D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt[J]. Environmental Science&Technology, 2003, 37(20):4790-4797. [18] LING S K, WANG S B, PENG Y L. Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate[J].Journal of Hazardous Materials, 2010, 178(1/2/3):385-389. [19] 韩强,杨世迎,杨鑫,等.钴催化过一硫酸氢盐降解水中有机污染物:机理及应用研究[J].化学进展, 2012, 24(1):144-156. [20] HAN D H, WAN J Q, MA Y W, et al. New insights into the role of organic chelating agents in Fe (Ⅱ) activated persulfate processes[J]. Chemical Engineering Journal, 2015, 269:425-433. [21] 苏跃涵,张利朋,王枫亮,等. Fe2+/单过氧硫酸氢盐(PMS)体系降解水体中酮洛芬的机制研究[J].环境化学,2016,35(9):1753-1761. [22] 熊易玄,柯雪珍,陈成,等.锰氧化物八面体分子筛活化过一硫酸氢盐降解酸性橙7[J].环境工程学报,2016,10(10):5600-5604. [23] GONG C, CHEN F, YANG Q, et al. Heterogeneous activation of peroxymonosulfate by Fe-Co layered doubled hydroxide for efficient catalytic degradation of Rhoadmine B[J]. Chemical Engineering Journal, 2017, 321:222-232. [24] YANG S Y, XIAO T, ZHANG J, et al. Activated carbon fiber as heterogeneous catalyst of peroxymonosulfate activation for efficient degradation of Acid Orange 7 in aqueous solution[J]. Separation&Purification Technology,2015, 143:19-26. [25] ZHOU L C, MA J J, ZHANG H, et al. Fabrication of magnetic carbon composites from peanut shells and its application as a heterogeneous Fenton catalyst in removal of methylene blue[J]. Applied Surface Science, 2015, 324:490-498. [26] 邓靖,冯善方,马晓雁,等.热活化过硫酸盐降解水中卡马西平[J].化工学报,2015(1):410-418. [27] SUN H Q, TIAN H Y, HARDJONO Y, et al. Preparation of cobalt/carbon-xerogel for heterogeneous oxidation of phenol[J].Catalysis Today, 2012, 186(1):63-68. [28] SHUKLA P R, WANG S B, SUN H Q, et al. Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution[J]. Applied Catalysis B Environmental, 2010, 100(3):529-534. [29] LIANG P, ZHANG C, DUAN X G, et al. An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants:formation mechanism and generation of singlet oxygen from peroxymonosulfate[J]. Environmental Science:Nano, 2017, 4(2):315-324. [30] AHN Y Y, BAE H, KIM H I, et al. Surface-loaded metal nanoparticles for peroxymonosulfate activation:efficiency and mechanism reconnaissance[J]. Applied Catalysis B Environmental, 2019, 241:561-569. [31] 李晨旭,彭伟,方振东,等.过渡金属氧化物非均相催化过硫酸氢盐(PMS)活化及氧化降解水中污染物的研究进展[J].材料导报,2018,32(13):2223-2229. [32] 吴光锐,侯亚璐,王帅军,等.不同形貌二氧化锰活化过一硫酸盐降解水中罗丹明B的研究[J].石油炼制与化工,2018,49(3):13-20. [33] ZHANG T, ZHU H B, CROUE J P. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water:efficiency,stability,and mechanism[J]. Environ Sci Technol, 2013, 47(6):2784-2791. [34] 邓林,邹志言,曾寒轩,等.活性炭负载钴铁氧体催化PMS降解水中罗丹明B[J].环境工程学报,2018,12(5):1372-1381. [35] HUSSAIN I, ZHANG Y Q, HUANG S B, et al. Degradation of p-chloroaniline by persulfate activated with zero-valent iron[J]. Chemical Engineering Journal, 2012, 203:269-276. [36] 唐聪,陈泉源,吕璠璠,等.三维电极电Fenton氧化法处理染料废水[J].化工环保,2019,39(1):28-33. [37] FENG Y, LIU J H, WU D L, et al. Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation[J]. Chemical Engineering Journal, 2015, 280:514-524.
点击查看大图
计量
- 文章访问数: 260
- HTML全文浏览量: 29
- PDF下载量: 7
- 被引次数: 0