PREPARATION OF CuO/ZnO CATALYST DERIVED FROM MOFs AND PHOTOCATALYTIC PERFORMANCE
-
摘要: 利用Cu3(BTC)2为材料模板制备金属氧化物CuO,通过光沉积引入Zn2+煅烧合成双金属氧化物催化剂CuO/ZnO,研究了该催化剂在可见光条件下对罗丹明B的光催化降解性能,确定了罗丹明B在降解过程中的主要活性物种,并利用液相原位红外技术探究其降解机理。结果表明:MOFs衍生物CuO/ZnO催化剂具有优良的光催化降解能力,可见光响应150 min后,对10 mg/L罗丹明B的降解率最高达到67.56%以上,其中发挥主要作用的活性物种是超氧自由基·O2-;经过5次循环实验后降解率仍在50%以上,证明该材料具有较好的可重复利用性。通过液相原位红外光谱检测,分析推断罗丹明B分子在降解过程中存在乙基、羧基和苯环芳香环结构的破坏以及氨基副产物的释放过程。该研究结果可为高效光催化体系的开发及污染物降解机理的研究提供参考。Abstract: In view of the different coordination modes of different metal ions, it is difficult to synthesize bimetallic organic framework (MOFs) materials, and obtain bimetal oxides by directly calcining MOFs. In this paper, Cu3(BTC)2 was used as a material template to prepare metal oxide CuO, and Zn2+ calcination was introduced by light deposition to synthesize a bimetal oxide catalyst CuO/ZnO. And then the photocatalytic degradation performance for rhodamine B (RhB) was studied under visible light condition. The main active species of the rhodamine B was determined in the degradation process. The degradation mechanism of dyes was investigated by liquid phase in-situ infrared technology. The result showed the MOFs derivative CuO/ZnO catalyst had an excellent photocatalytic degradation ability. The degradation efficiency of 10 mg/L rhodamine B reached 67.56% above after 150 min of visible light response. Among them, superoxide radical·O2- played a major role. After 5 cycles, the degradation rate was still above 50%, which proved that the material had good reusability. A method of liquid phase in-situ infrared technology was established. The analysis result inferred that, during the degradation process, the destruction of the ethyl, carboxyl and benzene ring aromatic ring structure took place on the rhodamine B molecule, as well as the release of the amino by-products. The research results provide references for the development of high-efficiency photocatalytic system and researches on pollutant degradation mechanism.
-
[1] YANG J J, CHEN D M, ZHU Y, et al. 3D-3d Porous Bi2WO6/graphene hydrogel composite with excellent synergistic effect of adsorption-enrichment and photocatalytic degradation[J]. Applied Catalysis B:Environmental, 2017, 205:228-237. [2] KHAN I A, BADSHAH A, NADEEM M A, et al. A copper based metal-organic framework as single source for the synthesis of electrode materials for high-performance supercapacitors and glucose sensing applications[J]. International Journal of Hydrogen Energy, 2014, 39(34):19609-19620. [3] ZHU C L, DING T, GAO W X, et al. CuO/CeO2 catalysts synthesized from Ce-UiO-66 metal-organic framework for preferential CO oxidation[J]. International Journal of Hydrogen Energy, 2017, 42(27):17457-17465. [4] LI H, LIANG M, SUN W X, et al. Bimetal-organic framework:one-step homogenous formation and its derived mesoporous ternary metal oxide nanorod for High-Capacity, High-Rate, and Long-Cycle-Life Lithium Storage[J]. Advanced Functional Materials, 2016, 26(7):1098-1103. [5] 张瑜港.镧系锕系双金属有机框架材料的合成和光学应用[D].苏州:苏州大学, 2020. [6] 贾哲,任帅,张洁静,等.异质结型CuO/ZnO复合纳米线的制备及光催化性能[J].光子学报, 2021, 50(1):75-82. [7] 侯俊英,郝建军,王雅雅,等. Cu3(BTC)2金属有机骨架复合基质膜的制备及流体催化性能[J].高等学校化学学报, 2019, 40(9):1926-1931. [8] 刘震震.金属有机骨架(Cu-MOF)催化NH3-SCR反应去除NO的研究[D].大连:大连理工大学, 2016. [9] MARTIN H, SEBASTIAN K, DIETER H, et al. Adsorptive separation of isobutene and isobutane on Cu3(BTC)2[J]. Langmuir, 2008, 24(16):8634-8642. [10] 吴冲冲.氧化铜异质结光催化剂的设计合成与应用[D].上海:上海工程技术大学, 2020. [11] 张会平.纳米铜及氧化(亚)铜薄膜的微观结构及性能[D].长春:吉林大学, 2007. [12] WANG J, WANG G H, WEI X H, et al. ZnO nanoparticles implanted in TiO2 macrochannels as an effective direct Z-scheme heterojunction photocatalyst for degradation of RhB[J]. Applied Surface Science, 2018, 456:666-675. [13] 武小满,郑永乐.微波辅助法制备CuO/ZnO及光催化研究[J].许昌学院学报, 2016, 35(2):76-80. [14] BALUYOT J C, REYES E M, VELARDE M C. Per-and polyfluoroalkyl substances (PFAS) as contaminants of emerging concern in Asia's freshwater resources[J]. Environmental Research, 2021, 197:111122. [15] BODKHE G A, HEDAU B S, DESHMUKH M A, et al. Detection of Pb (Ⅱ):AU nanoparticle incorporated CuBTC MOFs[J]. Frontiers in Chemistry, 2020, 8:803. [16] 李俊生,徐美艳,关天宇,等.水热辅助溶胶凝胶法制备纳米钛酸锌及其光催化性能[J].土木与环境工程学报(中英文), 2020, 42(3):149-155. [17] CHAI Y Y, LIU Q Q, QIU L, et al. Structure engineered g-C3N4 nano-sheets by switching the pyrolysis gas atmosphere for enhanced photo-catalytic degradation[J]. Chinese Journal of Chemistry, 2017,35(2):173-182. [18] LI S J, ZHANG J L, HU S W, et al. Synthesis of flower-like Ta3N5-Au heterojunction with enhanced visible light photocatalytic activity[J]. Journal of Alloys and Compounds, 2017, 695:1137-1144. [19] YANG Z, SHAO L, WANG L, et al. Boosted photogenerated carriers separation in Z-scheme Cu3P/ZnIn2S4 heterojunction photocatalyst for highly efficient H-2 evolution under visible light[J]. International Journal of Hydrogen Energy, 2020, 45(28):14334-14346. [20] 陈英,刘宝生,岑小龙.稀土改性Ni/TiO2光催化剂及其重复利用催化活性[J].稀土, 2010, 31(1):40-47. [21] HUANG M, WANG L, ZHANG K, et al. Preparation of three-dimensional flower-like Fe-Bi (OH)3 nanocomposites and the photocatalytic properties for degradation of Rhodamine B in presence of visible light[J]. Optik-International Journal for Light and Electron Optics, 2020, 216:164876. [22] DUKALI R M, RADOVIC I M, STOJANOVIC D B, et al. Electrospinning of the laser dye rhodamine B-doped poly (methyl methacrylate) nanofibers[J]. Journal of the Serbian Chemical Society, 2014, 79(7):867-880. [23] 吴孝敏,倪凯文,宇小龙,等.暴露CeO2不同晶面的VOx-MnOx/CeO2催化剂低温NH3-SCR脱硝的原位红外研究[J].燃料化学学报, 2020, 48(2):179-188.
点击查看大图
计量
- 文章访问数: 297
- HTML全文浏览量: 31
- PDF下载量: 5
- 被引次数: 0