CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫改性牛粪生物炭对Hg2+的高效吸附及其机理

张奎 王雪梅 李玉环 张瑜 刘梦娟 蒋雪萍 季宏兵

张奎, 王雪梅, 李玉环, 张瑜, 刘梦娟, 蒋雪萍, 季宏兵. 硫改性牛粪生物炭对Hg2+的高效吸附及其机理[J]. 环境工程, 2022, 40(4): 79-88. doi: 10.13205/j.hjgc.202204012
引用本文: 张奎, 王雪梅, 李玉环, 张瑜, 刘梦娟, 蒋雪萍, 季宏兵. 硫改性牛粪生物炭对Hg2+的高效吸附及其机理[J]. 环境工程, 2022, 40(4): 79-88. doi: 10.13205/j.hjgc.202204012
ZHANG Kui, WANG Xuemei, LI Yuhuan, ZHANG Yu, LIU Mengjuan, JIANG Xueping, JI Hongbing. HIGH EFFICIENCY ADSORPTION OF Hg2+ BY SULFUR-MODIFIED COW MANURE BIOCHAR AND ITS MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 79-88. doi: 10.13205/j.hjgc.202204012
Citation: ZHANG Kui, WANG Xuemei, LI Yuhuan, ZHANG Yu, LIU Mengjuan, JIANG Xueping, JI Hongbing. HIGH EFFICIENCY ADSORPTION OF Hg2+ BY SULFUR-MODIFIED COW MANURE BIOCHAR AND ITS MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 79-88. doi: 10.13205/j.hjgc.202204012

硫改性牛粪生物炭对Hg2+的高效吸附及其机理

doi: 10.13205/j.hjgc.202204012
基金项目: 

国家自然科学基金(41473122)

国家重点研发计划(2019YFC0408700)

中央高校基础科研项目(FRF-TP-19-020A1)

详细信息
    作者简介:

    张奎(1997-),男,硕士,主要研究方向为重金属污染修复。zhangkui@163.com

    通讯作者:

    季宏兵(1966-),男,教授,主要研究方向为环境地球化学。ji.hongbing@hotmail.com

HIGH EFFICIENCY ADSORPTION OF Hg2+ BY SULFUR-MODIFIED COW MANURE BIOCHAR AND ITS MECHANISM

  • 摘要: 以牛粪为原料在400,500,600 ℃条件下限氧热解制备牛粪生物炭(BC),然后以不同质量比将升华硫和BC混合共热解制备硫改性牛粪生物炭(BCS)。使用元素分析仪、SEM、FTIR、XPS和BET对制得的BC和BCS进行了表征,并研究了各BC和BCS对Hg2+的吸附特性。结果表明:热解过程使BC和BCS变得粗糙多孔,Hg2+被吸附到生物炭表面和孔道内;BC和BCS的吸附过程符合准二级动力学模型,BCS对Hg2+的吸附平衡时间仅为30 min,且吸附过程不受pH影响;Langmuir模型可较好地描述BC吸附过程,吸附量随热解温度的升高而降低,BCS吸附过程符合Freundlich模型,吸附能力较BC显著提升,最大拟合吸附量达到407.81 mg/g;BCS的吸附稳定性较高,在各解吸剂中的解吸率均低于5%;BC主要吸附机理为官能团络合,BCS主要吸附机理为HgS沉淀。因此BCS是一种高效稳定的Hg2+吸附材料。
  • [1] CABRITA M T, DUARTE B, CESÁRIO R, et al. Mercury mobility and effects in the salt-marsh plant Halimione portulacoides:uptake, transport, and toxicity and tolerance mechanisms[J]. Science of the Total Environment, 2019,650:111-120.
    [2] YU C H, XU Y P, YAN Y Y, et al. Mercury and methylmercury in China's lake sediments and first estimation of mercury burial fluxes[J]. Science of the Total Environment, 2021,770:145338.
    [3] KOPEC A D, KIDD K A, FISHER N S, et al. Spatial and temporal trends of mercury in the aquatic food web of the lower Penobscot River, Maine, USA, affected by a chlor-alkali plant[J]. Science of the Total Environment, 2019,649:770-791.
    [4] 朱先芳,唐磊,季宏兵,等.北京北部水系沉积物中重金属的研究[J].环境科学学报, 2010,30(12):2553-2562.
    [5] LANDIS M S, KEELER G J, AL-WALI K I, et al. Divalent inorganic reactive gaseous mercury emissions from a mercury cell chlor-alkali plant and its impact on near-field atmospheric dry deposition[J]. Atmospheric Environment, 2004,38(4):613-622.
    [6] HADAVIFAR M, BAHRAMIFAR N, YOUNESI H, et al. Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups[J]. Chemical Engineering Journal, 2014,237:217-228.
    [7] 贾威,陈金全,常军军.汞污染生物修复研究进展[J].环境工程, 2020,38(5):171-178.
    [8] 刘支强,康钦利,侯志成,等.含汞气田水硫化物的沉淀脱汞[J].油气田地面工程, 2012,31(4):41-42.
    [9] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water:a review[J]. Chemosphere, 2014,99:19-33.
    [10] 周俊,李燕,管益东,等.杨木生物炭对水溶液中3种磺胺类抗生素的混合吸附[J].环境工程, 2021,39(3):1-6.
    [11] 陈林,平巍,闫彬,等.不同制备温度下污泥生物炭对Cr (Ⅵ)的吸附特性[J].环境工程, 2020,38(8):119-124.
    [12] ZHAO J W, GAO F, SUN Y, et al. New use for biochar derived from bovine manure for tetracycline removal[J]. Journal of Environmental Chemical Engineering, 2021,9(4):105585.
    [13] VAUGHN S F, KENAR J A, THOMPSON A R, et al. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates[J]. Industrial Crops and Products, 2013,51:437-443.
    [14] HIGASHIKAWA F S, CONZ R F, COLZATO M, et al. Effects of feedstock type and slow pyrolysis temperature in the production of biochars on the removal of cadmium and nickel from water[J]. Journal of Cleaner Production, 2016,137:965-972.
    [15] 谢婧如,陈本寿,张进忠,等.巯基改性海泡石吸附水中的Hg (Ⅱ)[J].环境科学, 2016,37(6):2187-2194.
    [16] LYU H H, XIA S Y, TANG J C, et al. Thiol-modified biochar synthesized by a facile ball-milling method for enhanced sorption of inorganic Hg2+ and organic CH3Hg+[J]. Journal of Hazardous Materials, 2020,384:121357.
    [17] O'CONNOR D, PENG T, LI G, et al. Sulfur-modified rice husk biochar:a green method for the remediation of mercury contaminated soil[J]. Science of the Total Environment, 2018,621:819-826.
    [18] 彭华,张洪宇,张晶.畜禽粪污治理利用主要进展及问题对策[J].中国猪业, 2018,13(9):53-57.
    [19] 陈佼,黄雯,陆一新,等.羊粪生物炭对SBR系统污水处理性能的影响[J].水处理技术, 2021,47(10):108-112.
    [20] JEFFREY M, NOVAK I L B, XING J W G C, K. C. Das M A D, et al. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand[J]. Annals of Environmental Science, 2009,3:195-206.
    [21] SAHOO S S, VIJAY V K, CHANDRA R, et al. Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo[J]. Cleaner Engineering and Technology, 2021,3:100101.
    [22] PARK J, WANG J J, KIM S, et al. Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures[J]. Journal of Colloid and Interface Science, 2019,553:298-307.
    [23] HUANG F, ZHANG S M, WU R R, et al. Magnetic biochars have lower adsorption but higher separation effectiveness for Cd2+ from aqueous solution compared to nonmagnetic biochars[J]. Environmental Pollution, 2021,275:116485.
    [24] AHMAD Z, GAO B, MOSA A, et al. Removal of Cu (Ⅱ), Cd (Ⅱ) and Pb (Ⅱ) ions from aqueous solutions by biochars derived from potassium-rich biomass[J]. Journal of Cleaner Production, 2018,180:437-449.
    [25] WEBER W J, MORRIS J C. Kinetics of adsorption on carbon from solution[J]. Journal of the Sanitary Engineering Division, 1963,2(89):31-60.
    [26] 张艳素,豆小敏,于新,等.锆铁复合氧化物颗粒对As (Ⅴ)的去除研究[J].环境化学, 2011,30(8):1396-1404.
    [27] KUN-Yi A L, YU-Ting L, SHEN-Yi C. Adsorption of fluoride to UiO-66-NH2 in water:stability, kinetic, isotherm and thermodynamic studies[J]. Journal of Colloid and Interface Science, 2016,461:79-87.
    [28] YAO Y J, BING H, XU F F, et al. Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes[J]. Chemical Engineering Journal, 2011,170(1):82-89.
    [29] 曹健华,刘凌沁,黄亚继,等.原料种类和热解温度对生物炭吸附Cd2+的影响[J].化工进展, 2019,38(9):4183-4190.
    [30] LI R H, ZHANG Y C, DENG H X, et al. Removing tetracycline and Hg (Ⅱ) with ball-milled magnetic nanobiochar and its potential on polluted irrigation water reclamation[J]. Journal of Hazardous Materials, 2020,384:121095.
    [31] WALY S M, EL-WAKIL A M, EL-MAATY W M A, et al. Efficient removal of Pb (Ⅱ) and Hg (Ⅱ) ions from aqueous solution by amine and thiol modified activated carbon[J]. Journal of Saudi Chemical Society, 2021,25(8):101296.
    [32] SITKO R, MUSIELAK M, SERDA M, et al. Thiosemicarbazide-grafted graphene oxide as superior adsorbent for highly efficient and selective removal of mercury ions from water[J]. Separation and Purification Technology, 2021,254:117606.
    [33] XU X Y, CAO X D, ZHAO L. Comparison of rice husk-and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions:role of mineral components in biochars[J]. Chemosphere, 2013,92(8):955-961.
    [34] XU X Y, CAO X D, ZHAO L, et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar[J]. Environmental Science and Pollution Research, 2013,20(1):358-368.
    [35] HUANG Y, TANG J C, GAI L, et al. Different approaches for preparing a novel thiol-functionalized graphene oxide/Fe-Mn and its application for aqueous methylmercury removal[J]. Chemical Engineering Journal, 2017,319:229-239.
    [36] CHEN D, WANG X B, WANG X L, et al. The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil[J]. Science of the Total Environment, 2020,714:136550.
    [37] COATES J. Interpretation of infrared spectra, a practical approach[M]. John Wiley&Sons, Ltd., 2006.
    [38] RAO C N R, VENKATARAGHAVAN R. The CS stretching frequency and the"-N-CS bands"in the infrared[J]. Spectrochimica Acta Part A:Molecular Spectroscopy, 1989,45:299-305.
    [39] DONG X, MA L Q, ZHU Y, et al. Mechanistic investigation of mercury sorption by brazilian pepper biochars of different pyrolytic temperatures based on X-ray photoelectron spectroscopy and flow calorimetry[J]. Environmental Science&Technology, 2013,47(21):12156-12164.
    [40] TANG H J, YOU W Q, WANG Z W, et al. Detrimental effects of SO2 on gaseous mercury (Ⅱ) adsorption and retention by CaO-based sorbent traps:competition and heterogeneous reduction[J]. Journal of Hazardous Materials, 2020,387:121679.
    [41] STROYUK O, RAEVSKAYA A, SPRANGER F, et al. Mercury-indium-sulfide nanocrystals:a new member of the family of ternary in based chalcogenides[J]. The Journal of Chemical Physics, 2019,151(14):144701.
    [42] ZYLBERAJCH-ANTOINE C, BARRAUD A, ROULET H, et al. XPS characterization of inserted mercury sulfide single layers in a Langmuir-Blodgett matrix[J]. Applied Surface Science, 1991,52(4):323-327.
  • 加载中
计量
  • 文章访问数:  141
  • HTML全文浏览量:  20
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-06
  • 网络出版日期:  2022-07-06

目录

    /

    返回文章
    返回