中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁盐与铝盐混凝去除EDTA土壤淋洗废液中砷、锑效果对比

袁明珠 丁雷 李爽 李永连

袁明珠, 丁雷, 李爽, 李永连. 铁盐与铝盐混凝去除EDTA土壤淋洗废液中砷、锑效果对比[J]. 环境工程, 2022, 40(4): 121-126. doi: 10.13205/j.hjgc.202204017
引用本文: 袁明珠, 丁雷, 李爽, 李永连. 铁盐与铝盐混凝去除EDTA土壤淋洗废液中砷、锑效果对比[J]. 环境工程, 2022, 40(4): 121-126. doi: 10.13205/j.hjgc.202204017
YUAN Mingzhu, DING Lei, LI Shuang, LI Yonglian. COMPARATIVE STUDY ON REMOVAL OF ARSENIC AND ANTIMONY FROM SPENT EDTA SOIL WASHING SOLUTION BY IRON/ALUMINUM COAGULATION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 121-126. doi: 10.13205/j.hjgc.202204017
Citation: YUAN Mingzhu, DING Lei, LI Shuang, LI Yonglian. COMPARATIVE STUDY ON REMOVAL OF ARSENIC AND ANTIMONY FROM SPENT EDTA SOIL WASHING SOLUTION BY IRON/ALUMINUM COAGULATION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 121-126. doi: 10.13205/j.hjgc.202204017

铁盐与铝盐混凝去除EDTA土壤淋洗废液中砷、锑效果对比

doi: 10.13205/j.hjgc.202204017
基金项目: 

国家重点研发计划(2018YFC1802704)

详细信息
    作者简介:

    袁明珠(1996-),男,硕士研究生,主要研究方向为污水处理及资源化。751891580@qq.com

    通讯作者:

    丁雷(1978-),男,博士,副教授,主要研究方向为污水处理及资源化、土壤修复。leiding@ecust.edu.cn

COMPARATIVE STUDY ON REMOVAL OF ARSENIC AND ANTIMONY FROM SPENT EDTA SOIL WASHING SOLUTION BY IRON/ALUMINUM COAGULATION PROCESS

  • 摘要: 实验以三氯化铁和三氯化铝作为混凝剂,对比研究了混凝去除EDTA土壤淋洗废液中砷、锑的效果,重点探讨了反应终点pH、EDTA浓度、Fe/Al投加量以及共存重金属离子对砷、锑去除效果的影响。结果表明:1)对于EDTA土壤淋洗废液中As(Ⅴ)、Sb(Ⅴ)的去除,铝盐比铁盐效果更优;2)EDTA的存在不仅降低了铁盐/铝盐混凝对As(Ⅴ)、Sb(Ⅴ)的吸附去除效果,同时抑制了砷酸铁、锑酸铁等物质的生成,削弱了铁盐对As(Ⅴ)、Sb(Ⅴ)的沉淀去除。EDTA导致铁盐混凝过程中生成粒径较大、表面活性较低的稳定结晶态絮体;3)当c(EDTA)=0.05 mol/L时,在pH=5、ρ(Al)=2000 mg/L的条件下,铝盐对EDTA土壤淋洗废液中As(Ⅴ)、Sb(Ⅴ)的去除率分别高达98.00%和93.09%;4)共存重金属离子通过与EDTA络合,增加了絮体Al(OH)3的生成量,促进了As(Ⅴ)、Sb(Ⅴ)去除。由此表明,铝盐能够有效实现EDTA土壤淋洗废液中As(Ⅴ)、Sb(Ⅴ)的去除,对于推动基于EDTA的土壤淋洗技术的广泛应用具有重要意义。
  • [1] 刘乃静,李臻,赵银鑫,等.吴忠市表层土壤重金属污染及其潜在生态风险评价[J].科学技术与工程,2020, 20(17):7114-7121.
    [2] 胡疆.利用淋洗剂组合去除土壤中重金属及淋洗液回收技术研究[D].长沙:湖南农业大学,2015.
    [3] 张富贵,彭敏,王惠艳,等.基于乡镇尺度的西南重金属高背景区土壤重金属生态风险评价[J].环境科学,2020, 41(9):4197-4209.
    [4] 谢运河,纪雄辉,吴家梅,等.不同有机肥对土壤镉锌生物有效性的影响[J].应用生态学报,2015, 26(3):826-832.
    [5] LESTAN D, LUO C L, LI X D. The use of chelating agents in the remediation of metal-contaminated soils:a review[J]. Environmental Pollution, 2008, 153(1):3-13.
    [6] GUO X F, ZHAO G H, ZHANG G X, et al. Effect of mixed chelators of EDTA, GLDA, and citric acid on bioavailability of residual heavy metals in soils and soil properties[J]. Chemosphere, 2018, 209:776-782.
    [7] LIAO X Y, LI Y, YAN X L. Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process[J]. Journal of Environmental Sciences, 2016, 41(3):202-210.
    [8] 陈寻峰,李小明,陈灿,等.砷污染土壤复合淋洗修复技术研究[J].环境科学,2016, 37(3):1147-1155.
    [9] 孙浩然.螯合剂淋洗修复土壤中As、Sb污染物实验研究[D].贵阳:贵州大学,2016.
    [10] WANG Q W, CHEN J J, ZHENG A H, et al. Dechelation of Cd-EDTA complex and recovery of EDTA from simulated soil-washing solution with sodium sulfide[J]. Chemosphere, 2019, 220:1200-1207.
    [11] GILES D E, MOHAPATRA M, ISSA T B, et al. Iron and aluminium based adsorption strategies for removing arsenic from water[J]. Journal of Environmental Management, 2011, 92(12):3011-3022.
    [12] GUO W J, FU Z Y, WANG H, et al. Removal of antimonate (Sb (Ⅴ)) and antimonite (Sb (Ⅲ)) from aqueous solutions by coagulation-flocculation-sedimentation (CFS):dependence on influencing factors and insights into removal mechanisms[J]. Science of the Total Environment, 2018, 644:1277-1285.
    [13] 陈桂霞,胡承志,朱灵峰,等.铝盐混凝除砷影响因素及机制研究[J].环境科学,2013, 34(4):1386-1391.
    [14] WANG Y L, LV C C, XIAO L, et al. Arsenic removal from alkaline leaching solution using Fe (Ⅲ) precipitation[J]. Environmental Technology, 2019, 40(13):1714-1720.
    [15] KOPARAL A S,ÖZGÜR R, ÖǦÜTVEREN Ü B, et al. Antimony removal from model acid solutions by electrodeposition[J]. Separation and Purification Technology, 2004, 37(2):107-116.
    [16] NOWACK B, KARI F G, HILGER S U, et al. Determination of dissolved and adsorbed EDTA species in water and sediments by HPLC[J]. Analytical Chemistry, 1996, 68(3):561-566.
    [17] AMSTAETTER K, BORCH T, LARESE-CASANOVA P, et al. Redox transformation of arsenic by Fe (Ⅱ)-activated goethite (α-FeOOH)[J]. Environmental Science&Technology, 2010, 44(1):102-108.
    [18] ZHANG T T, ZHAO Y L, KANG S C, et al. Formation of active Fe (OH)3 in situ for enhancing arsenic removal from water by the oxidation of Fe (Ⅱ) in air with the presence of CaCO3[J]. Journal of Cleaner Production, 2019, 227:1-9.
    [19] ANDEREGG G, ARNAUD-NEU F, DELGADO R, et al. Critical evaluation of stability constants of metal complexes of complexones for biomedical and environmental applications (IUPAC Technical Report)[J]. Pure&Applied Chemistry, 2005, 77(8):1445-1495.
    [20] GUO X J, WU Z J, HE M C. Removal of antimony (Ⅴ) and antimony (Ⅲ) from drinking water by coagulation-flocculation-sedimentation (CFS)[J]. Water Research, 2009, 43(17):4327-4235.
    [21] 王文龙,胡洪营,刘玉红,等.混凝和强化混凝对印染废水中锑(Ⅴ)的去除特性[J].环境科学学报,2019, 39(10):3374-3380.
    [22] YANG K L, ZHOU J S, LOU Z M, et al. Removal of Sb (Ⅴ) from aqueous solutions using Fe-Mn binary oxides:the influence of iron oxides forms and the role of manganese oxides[J]. Chemical Engineering Journal, 2018, 354:577-588.
    [23] MERTENS J, CASENTINI B, MASION A, et al. Polyaluminum chloride with high Al30 content as removal agent for arsenic-contaminated well water[J]. Water Research, 2012, 46(1):53-62.
  • 加载中
计量
  • 文章访问数:  109
  • HTML全文浏览量:  18
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 网络出版日期:  2022-07-06

目录

    /

    返回文章
    返回