CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pd-Cu@UiO-66催化还原水中硝酸盐

原晓梅 王瑛 徐欣 王玮 魏海生

原晓梅, 王瑛, 徐欣, 王玮, 魏海生. Pd-Cu@UiO-66催化还原水中硝酸盐[J]. 环境工程, 2022, 40(4): 147-152. doi: 10.13205/j.hjgc.202204021
引用本文: 原晓梅, 王瑛, 徐欣, 王玮, 魏海生. Pd-Cu@UiO-66催化还原水中硝酸盐[J]. 环境工程, 2022, 40(4): 147-152. doi: 10.13205/j.hjgc.202204021
YUAN Xiaomei, WANG Ying, XU Xin, WANG Wei, WEI Haisheng. CATALYTIC REDUCTION OF NITRATE IN WATER BY Pd-Cu@UiO-66[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 147-152. doi: 10.13205/j.hjgc.202204021
Citation: YUAN Xiaomei, WANG Ying, XU Xin, WANG Wei, WEI Haisheng. CATALYTIC REDUCTION OF NITRATE IN WATER BY Pd-Cu@UiO-66[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 147-152. doi: 10.13205/j.hjgc.202204021

Pd-Cu@UiO-66催化还原水中硝酸盐

doi: 10.13205/j.hjgc.202204021
基金项目: 

国家自然科学基金(21808193)

详细信息
    作者简介:

    原晓梅(1996-),女,硕士研究生,主要研究方向为环境催化。211325765@qq.com

    通讯作者:

    王玮(1982-),女,讲师,博士,主要研究方向为环境催化。wangwei_ytu@163.com

CATALYTIC REDUCTION OF NITRATE IN WATER BY Pd-Cu@UiO-66

  • 摘要: 为解决地下水中硝酸盐含量过高的问题,首次制备了双金属Pd-Cu@UiO-66催化剂用于催化还原水中硝酸盐的研究,重点考察了不同调节剂制备的载体和工艺条件对脱硝性能的影响。结果表明:采用盐酸制备的UiO-66载体,Pd、Cu金属负载量分别为1%,氢气流量为70 mL/min时,硝酸盐脱除率为97.4%,N2的选择性可达到95.2%。pKa值越低的调节剂所制备的载体粒径越小,越有利于活性金属的分散,且形成的金属粒径较小。活性金属的高度分散有利于活化氢的生成及Cu的电子迁移,能够提高脱硝反应中N2的选择性。在反应过程中,双金属的协同效应是影响催化性能的关键因素。
  • [1] JIU T L, YU M P, LI C, et al. Characterization of the hydrochemistry of water resources of the Weibei Plain, Northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health[J]. Environmental Pollution, 2021, 268(8):115947.
    [2] EUN H K, EUNHEE L, KANG K L, et al. Application of geographically weighted regression models to predict spatial characteristics of nitrate contamination:implications for an effective groundwater management strategy[J]. Journal of Environmental Management, 2020, 268:110646.
    [3] 林珊,韦会松,刘俊菊.农村地下水中硝酸盐污染状况及原因分析[J].中国卫生产业, 2019, 16(22):154-155.
    [4] AYERS J R, VILLARINI G, SCHILLING K, et al. Development of statistical models for estimating daily nitrate load in iowa[J]. Science of the Total Environment, 2021, 782:146643.
    [5] XIN Z, YAN Z, PENG S, et al. The deep challenge of nitrate pollution in river water of China[J]. Science of the Total Environment, 2021, 770(25):144674.
    [6] 袁寒艳,厉志玉,盛雪飞,等.一起亚硝酸盐引起的食源性疾病调查报告[J].预防医学, 2017, 29(3):280-281

    ,292.
    [7] KIELEMOES J, BOEVER P, VERSTRAETE W, et al. Influence of denitrification on the corrosion of iron and stainless steel powder[J]. Environmental Science and Technology, 2000, 34(4):663-671.
    [8] YONG H H, TIAN C Z. Enhancement of nitrate reduction in Fe 0-packed columns by selected cations[J]. Journal of Environmental Engineering, 2005, 131(4):603-611.
    [9] 费宇雷,曹国民,张立辉,等.离子交换树脂脱除地下水中的硝酸盐[J].净水技术, 2011, 30(1):20-24.
    [10] 郭康贤,莫新来,谭子斌,等.基于膜分离技术的脱硝原理及工艺[J].广东化工, 2011, 38(10):97-98.
    [11] VORLOP K D, TACKE T. Erste schritte auf dem weg zur edelmetallkatalysierten nitrat-und nitrit-entfernung aus trinkwasser[J]. Chemie Ingenieur Technik, 1989, 61(10):836-837.
    [12] MARTINEZ J, ORTIZ I. State-of-the-art and perspectives of the catalytic and electro catalytic reduction of aqueous nitrates[J]. Applied Catalysis B:Environmental, 2017, 207:42-59.
    [13] EPRON F, GAUTHARD F, PINÉDA C, et al. Catalytic reduction of nitrate and nitrite on Pt-Cu/Al2O3 catalysts in aqueous solution:role of the interaction between copper and platinum in the reaction[J]. Journal of Catalysis, 2001, 198(2):309-318.
    [14] ZHANG Z Q, XU Y P, SHI W X, et al. Electrochemical catalytic reduction of nitrate over Pd-Cu/γAl2O3 catalyst in cathode chamber:enhanced removal efficiency and N2 selectivity[J]. Chemical Engineering Journal, 2016, 290:201-208.
    [15] 云玉攀,梁钊,朱振亚,等. Pd-Cu/石墨烯协同零价铁(Fe0)的催化反硝化实验[J].环境工程, 2021, 39(1):70-74

    , 165.
    [16] TAN C L, CAN X H, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaters[J]. Chemical Reviews, 2017, 117(9):6225-6331.
    [17] KIM S, MUHAMMAD R, SCHUETZENDUEBE P, et al. Hybrids of Pd nanoparticles and metal-organic frameworks for enhanced magnetism[J]. Journal of Physical Chemistry Letters, 2021, 12(19):4742-4748.
    [18] WANG Y H, CHUANG C H, CHIU T A, et al. Size-tunable synthesis of palladium nanoparticles confined within topologically distinct metal-organic frameworks for catalytic dehydrogenation of methanol[J]. The Journal of Physical Chemistry C, 2020, 124(23):12521-12530.
    [19] WANG F F, WANG Q W, CHEN X J, et al. Theoretical investigations on the effect of the functional group of Pd@UiO-66 for formic acid dehydrogenation[J]. The Journal of Physical Chemistry C, 2020, 124(43):23738-23744.
    [20] KAVAK S, KULAK H, POLAT H M, et al. Fast and selective adsorption of methylene blue from water using[BMIM][PF6]-incorporated UiO-66 and NH2-UiO-66[J]. Crystal Growth&Design, 2020, 20(6):3590-3595.
    [21] AMARAJOTHI D, ANDREA S, ASIRI A M, et al. Engineering UiO-66 metal organic framework for heterogeneous catalysis[J]. ChemCatChem, 2019, 11(3):899-923.
    [22] AGHILI F, GHOREYSHI A A, RAHIMPOUR A, et al. New chemistry for mixed matrix membranes:growth of continuous multilayer UiO-66-NH2 on UiO-66-NH2-based polyacrylonitrile for highly efficient separations[J]. Industrial&Engineering Chemistry Research, 2020, 59(16):7825-7838.
    [23] ZHAO W W, ZHANG C Y, YAN Z G, et al. Separations of substituted benzenes and polycyclic aromatic hydrocarbons using normal and reverse-phase high performance liquid chromatography with UiO-66 as the stationary phase[J]. Journal of Chromatography A, 2014, 1370:121-128.
    [24] YI F, QIAN C, MIN Q J, et al. Tailoring the properties of UiO-66 through defect engineering:a review[J]. Industrial&Engineering Chemistry Research, 2019, 58(38):17646-17659.
    [25] SHEARER C G, CHAVAN S, BORDIGA S, et al. Defect engineering:tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis[J]. Chemistry of Materials:A Publication of the American Chemistry Society, 2016, 28(11):3749-3761.
    [26] CHEN L, HUANG W, WANG X, et al. catalytically active designer crown-jewel Pd-based nanostructures encapsulated in metal-organic frameworks[J]. Chemical Communications, 2017, 53(6):1184-1187.
    [27] JUNG S, BAE S, LEE W. Development of Pd-Cu/hematite catalyst for selective nitrate reduction[J]. Environmental Science&Technology, 2014, 48(16):9651-9658.
    [28] 王瑛,原晓梅,王玮.光沉积法制备Pd-Cu/TiO2催化还原硝酸盐的研究[J].山东化工, 2021, 50(1):64-67.
    [29] LUO S X, ZENG Z T, ZENG G M, et al. Metal organic frameworks as robust host of pd nanoparticles in heterogeneous catalysis:synthesis, application and prospect[J]. ACS Applied Materials&Interfaces, 2019, 11(36):32579-32598.
    [30] SHIN H, JUNG S, BAE S, et al. Nitrite reduction mechanism on a Pd surface[J]. Environmental Science&Technology, 2014, 48(21):12768-12774.
  • 加载中
计量
  • 文章访问数:  139
  • HTML全文浏览量:  8
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-09
  • 网络出版日期:  2022-07-06

目录

    /

    返回文章
    返回