CATALYTIC REDUCTION OF NITRATE IN WATER BY Pd-Cu@UiO-66
-
摘要: 为解决地下水中硝酸盐含量过高的问题,首次制备了双金属Pd-Cu@UiO-66催化剂用于催化还原水中硝酸盐的研究,重点考察了不同调节剂制备的载体和工艺条件对脱硝性能的影响。结果表明:采用盐酸制备的UiO-66载体,Pd、Cu金属负载量分别为1%,氢气流量为70 mL/min时,硝酸盐脱除率为97.4%,N2的选择性可达到95.2%。pKa值越低的调节剂所制备的载体粒径越小,越有利于活性金属的分散,且形成的金属粒径较小。活性金属的高度分散有利于活化氢的生成及Cu的电子迁移,能够提高脱硝反应中N2的选择性。在反应过程中,双金属的协同效应是影响催化性能的关键因素。Abstract: To solve the problem of high nitrate content of groundwater, bimetal Pd-Cu@UiO-66 catalyst was prepared for the catalytic reduction of nitrate in water for the first time. The influence of the carrier synthesized with different regulator and process conditions on denitrification performance was investigated. The results showed that the nitrate removal rate was 97.4%, and N2 selectivity was 95.2% when the UIO-66 carrier was prepared by hydrochloric acid with the loading of 1% Pd and 1% Cu and the hydrogen flow rate was 70 mL/min. The carrier prepared with the modulator of lower pKa had the smaller particle size, which was conducive to the formation and dispersion of smaller active metal particles. The high dispersion of active metal was beneficial to the generation of activated hydrogen and the electron transport of Cu, and to improve the selectivity of nitrogen in denitration reaction. During the reaction, the bimetallic synergic effect was the key factor affecting the catalytic performance.
-
Key words:
- nitrate removal /
- MOFs material /
- Pd-Cu catalyst /
- metal particle size
-
[1] JIU T L, YU M P, LI C, et al. Characterization of the hydrochemistry of water resources of the Weibei Plain, Northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health[J]. Environmental Pollution, 2021, 268(8):115947. [2] EUN H K, EUNHEE L, KANG K L, et al. Application of geographically weighted regression models to predict spatial characteristics of nitrate contamination:implications for an effective groundwater management strategy[J]. Journal of Environmental Management, 2020, 268:110646. [3] 林珊,韦会松,刘俊菊.农村地下水中硝酸盐污染状况及原因分析[J].中国卫生产业, 2019, 16(22):154-155. [4] AYERS J R, VILLARINI G, SCHILLING K, et al. Development of statistical models for estimating daily nitrate load in iowa[J]. Science of the Total Environment, 2021, 782:146643. [5] XIN Z, YAN Z, PENG S, et al. The deep challenge of nitrate pollution in river water of China[J]. Science of the Total Environment, 2021, 770(25):144674. [6] 袁寒艳,厉志玉,盛雪飞,等.一起亚硝酸盐引起的食源性疾病调查报告[J].预防医学, 2017, 29(3):280-281,292. [7] KIELEMOES J, BOEVER P, VERSTRAETE W, et al. Influence of denitrification on the corrosion of iron and stainless steel powder[J]. Environmental Science and Technology, 2000, 34(4):663-671. [8] YONG H H, TIAN C Z. Enhancement of nitrate reduction in Fe 0-packed columns by selected cations[J]. Journal of Environmental Engineering, 2005, 131(4):603-611. [9] 费宇雷,曹国民,张立辉,等.离子交换树脂脱除地下水中的硝酸盐[J].净水技术, 2011, 30(1):20-24. [10] 郭康贤,莫新来,谭子斌,等.基于膜分离技术的脱硝原理及工艺[J].广东化工, 2011, 38(10):97-98. [11] VORLOP K D, TACKE T. Erste schritte auf dem weg zur edelmetallkatalysierten nitrat-und nitrit-entfernung aus trinkwasser[J]. Chemie Ingenieur Technik, 1989, 61(10):836-837. [12] MARTINEZ J, ORTIZ I. State-of-the-art and perspectives of the catalytic and electro catalytic reduction of aqueous nitrates[J]. Applied Catalysis B:Environmental, 2017, 207:42-59. [13] EPRON F, GAUTHARD F, PINÉDA C, et al. Catalytic reduction of nitrate and nitrite on Pt-Cu/Al2O3 catalysts in aqueous solution:role of the interaction between copper and platinum in the reaction[J]. Journal of Catalysis, 2001, 198(2):309-318. [14] ZHANG Z Q, XU Y P, SHI W X, et al. Electrochemical catalytic reduction of nitrate over Pd-Cu/γAl2O3 catalyst in cathode chamber:enhanced removal efficiency and N2 selectivity[J]. Chemical Engineering Journal, 2016, 290:201-208. [15] 云玉攀,梁钊,朱振亚,等. Pd-Cu/石墨烯协同零价铁(Fe0)的催化反硝化实验[J].环境工程, 2021, 39(1):70-74, 165. [16] TAN C L, CAN X H, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaters[J]. Chemical Reviews, 2017, 117(9):6225-6331. [17] KIM S, MUHAMMAD R, SCHUETZENDUEBE P, et al. Hybrids of Pd nanoparticles and metal-organic frameworks for enhanced magnetism[J]. Journal of Physical Chemistry Letters, 2021, 12(19):4742-4748. [18] WANG Y H, CHUANG C H, CHIU T A, et al. Size-tunable synthesis of palladium nanoparticles confined within topologically distinct metal-organic frameworks for catalytic dehydrogenation of methanol[J]. The Journal of Physical Chemistry C, 2020, 124(23):12521-12530. [19] WANG F F, WANG Q W, CHEN X J, et al. Theoretical investigations on the effect of the functional group of Pd@UiO-66 for formic acid dehydrogenation[J]. The Journal of Physical Chemistry C, 2020, 124(43):23738-23744. [20] KAVAK S, KULAK H, POLAT H M, et al. Fast and selective adsorption of methylene blue from water using[BMIM][PF6]-incorporated UiO-66 and NH2-UiO-66[J]. Crystal Growth&Design, 2020, 20(6):3590-3595. [21] AMARAJOTHI D, ANDREA S, ASIRI A M, et al. Engineering UiO-66 metal organic framework for heterogeneous catalysis[J]. ChemCatChem, 2019, 11(3):899-923. [22] AGHILI F, GHOREYSHI A A, RAHIMPOUR A, et al. New chemistry for mixed matrix membranes:growth of continuous multilayer UiO-66-NH2 on UiO-66-NH2-based polyacrylonitrile for highly efficient separations[J]. Industrial&Engineering Chemistry Research, 2020, 59(16):7825-7838. [23] ZHAO W W, ZHANG C Y, YAN Z G, et al. Separations of substituted benzenes and polycyclic aromatic hydrocarbons using normal and reverse-phase high performance liquid chromatography with UiO-66 as the stationary phase[J]. Journal of Chromatography A, 2014, 1370:121-128. [24] YI F, QIAN C, MIN Q J, et al. Tailoring the properties of UiO-66 through defect engineering:a review[J]. Industrial&Engineering Chemistry Research, 2019, 58(38):17646-17659. [25] SHEARER C G, CHAVAN S, BORDIGA S, et al. Defect engineering:tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis[J]. Chemistry of Materials:A Publication of the American Chemistry Society, 2016, 28(11):3749-3761. [26] CHEN L, HUANG W, WANG X, et al. catalytically active designer crown-jewel Pd-based nanostructures encapsulated in metal-organic frameworks[J]. Chemical Communications, 2017, 53(6):1184-1187. [27] JUNG S, BAE S, LEE W. Development of Pd-Cu/hematite catalyst for selective nitrate reduction[J]. Environmental Science&Technology, 2014, 48(16):9651-9658. [28] 王瑛,原晓梅,王玮.光沉积法制备Pd-Cu/TiO2催化还原硝酸盐的研究[J].山东化工, 2021, 50(1):64-67. [29] LUO S X, ZENG Z T, ZENG G M, et al. Metal organic frameworks as robust host of pd nanoparticles in heterogeneous catalysis:synthesis, application and prospect[J]. ACS Applied Materials&Interfaces, 2019, 11(36):32579-32598. [30] SHIN H, JUNG S, BAE S, et al. Nitrite reduction mechanism on a Pd surface[J]. Environmental Science&Technology, 2014, 48(21):12768-12774.
点击查看大图
计量
- 文章访问数: 139
- HTML全文浏览量: 8
- PDF下载量: 7
- 被引次数: 0