中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于微电子废水预处理的过滤式阴极电芬顿工艺中试

查文桂 王雪野 王志伟

查文桂, 王雪野, 王志伟. 用于微电子废水预处理的过滤式阴极电芬顿工艺中试[J]. 环境工程, 2022, 40(4): 153-158,208. doi: 10.13205/j.hjgc.202204022
引用本文: 查文桂, 王雪野, 王志伟. 用于微电子废水预处理的过滤式阴极电芬顿工艺中试[J]. 环境工程, 2022, 40(4): 153-158,208. doi: 10.13205/j.hjgc.202204022
ZHA Wengui, WANG Xueye, WANG Zhiwei. PILOT-SCALE STUDY ON MEMBRANE-CATHODE ELECTRO-FENTON PROCESS FOR PRETREATMENT OF SEMICONDUCTOR WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 153-158,208. doi: 10.13205/j.hjgc.202204022
Citation: ZHA Wengui, WANG Xueye, WANG Zhiwei. PILOT-SCALE STUDY ON MEMBRANE-CATHODE ELECTRO-FENTON PROCESS FOR PRETREATMENT OF SEMICONDUCTOR WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 153-158,208. doi: 10.13205/j.hjgc.202204022

用于微电子废水预处理的过滤式阴极电芬顿工艺中试

doi: 10.13205/j.hjgc.202204022
基金项目: 

国家重点研发计划项目(2019YFC0408200)

详细信息
    作者简介:

    查文桂(1998-),男,硕士研究生,主要研究方向为工业废水电化学膜处理技术。17746626548@163.com

    通讯作者:

    王志伟(1980-),男,教授,博士生导师,主要研究方向为膜法污水处理与资源化技术。zwwang@tongji.edu.cn

PILOT-SCALE STUDY ON MEMBRANE-CATHODE ELECTRO-FENTON PROCESS FOR PRETREATMENT OF SEMICONDUCTOR WASTEWATER

  • 摘要: 以钢丝网膜组件为阴极构建了过滤式阴极电芬顿工艺,针对微电子废水再生回用预处理开展中试研究。考察了过滤式阴极电芬顿工艺有机物处理潜能,研究了曝气/不曝气、外加电压、Fe2+投加量等运行参数对污染物去除效果及运行费用的影响,在最优工况下开展了连续流中试,并与传统芬顿工艺进行对比。结果表明:过滤式阴极电芬顿工艺能够稳定产生·OH,具备难降解有机物处理潜能。在HRT=120 min条件下,过滤式阴极电芬顿工艺最佳运行工况为:曝气量0.6 m3/h,外加电压3 V,Fe2+投加量0.3 mmol/L。在该工况下处理微电子废水COD、TOC、H2O2去除率分别为(73.6±18.3)%、(51.2±12.7)%和(83.7±13.0)%,单位COD处理费用为1.93 元/g COD,有机物去除效果和运行费用较传统芬顿具有显著优势。
  • [1] 张国栋.集成电路行业废水处理新工艺及中水回用的研究与实践[D].上海:上海交通大学, 2007.
    [2] 朱加豆,江宇,洪耀亮,等.三星半导体公司闪存芯片生产废水处理工程[J].中国给水排水, 2018, 34(10):105-109.
    [3] YAQUB M, LEE W. Zero-liquid discharge (ZLD) technology for resource recovery from wastewater:a review[J]. Science of the Total Environment, 2019, 681:551-563.
    [4] CUI P Z, YU Q, YANG S Y. New water treatment index system toward zero liquid discharge for sustainable coal chemical processes[J]. Sustainable Chemistry Engineering, 2018,6:1370-1378.
    [5] TONG T Z, ELIMELECH M. The global rise of zero liquid discharge for wastewater management:drivers, technologies, and future directions[J]. Environmental Science and Technology, 2016,50(13):6846-6855.
    [6] SEMBLANTE G U, LEE J Z, LEE L Y, et al. Brine pre-treatment technologies for zero liquid discharge systems[J]. Desalination, 2018,441:96-111.
    [7] MOUSSA D, EL-NAAS M, NASSER M, et al. A comprehensive review of electrocoagulation for water treatment:potentials and challenges[J]. Journal of Environmental Management, 2017,186(1):24-41.
    [8] JUSTO A, GONZÁLEZ O, SANS C, et al. BAC filtration to mitigate micropollutants and EfOM content in reclamation reverse osmosis brines[J]. Chemical Engineering Journal, 2015,279:589-596.
    [9] HU T H, WHANG L M, LIU P G, et al. Biological treatment of TMAH (tetra-methyl ammonium hydroxide) in a full-scale TFT-LCD wastewater treatment plant[J]. Bioresource Technology, 2012,113:303-310.
    [10] CHEN S Y, LU L A, LIN J G. Biodegradation of tetramethyl ammonium hydroxide (TMAH) in completely autotrophic nitrogen removal over nitrite (CANON) process[J]. Bioresource Technology, 2016,210:88-93.
    [11] ZHANG M H, DONG H, ZHAO L. A review on Fenton process for organic wastewater treatment based on optimization perspective[J]. Science of the Total Environment, 2019,670:110-121.
    [12] PARK M, ANUMOL T, SIMON J, et al. Pre-ozonation for high recovery of nanfiltration (NF) membrane system:membrane fouling reduction and trace organic compound attenuation[J]. Journal of Environmental Management, 2017,186:24-41.
    [13] LU J, FAN L H, RODDICK F A, et al. Potential of BAC combined with UVC/H2O2 for reducing organic matter from highly saline reverse osmosis concentrate produced from municipal wastewater reclamation[J]. Chemosphere, 2013,93(4):683-688.
    [14] 吴月,孙宇维,王岽,等.曝气及外加H2O2强化电芬顿法处理石化反渗透浓水[J].化工进展, 2017, 36(9):3523-3530.
    [15] SANTANA-MARTINEZ G, ROA-MORALES G, DEL-CAMPO E M, et al. electro-Fenton and electro Fenton-like with in situ, electro generation of H2O2, and catalyst applied to 4-chlorophenol mineralization[J]. Electrochimica Acta, 2016,195:246-256.
    [16] YANG Y, QIAO S, ZHOU J T, et al. Mitigating membrane fouling based on in situ ·OH generation in a novel electro-fenton membrane bioreactor[J]. Environmental Science and Technology, 2020,54:7669-7676.
    [17] PAN Z L, SONG C G, LI L, et al. Membrane technology coupled with electrochemical advanced oxidation processes for organic wastewater treatment:recent advances and future prospects[J]. Chemical Engineering Journal, 2019,376:120919.
    [18] KUBO D, KAWASE Y. Hydroxyl radical generation in electro-Fenton process with in situ electro-chemical production of Fenton reagents by gas-diffusion-electrode cathode and sacrificial iron anode[J]. Journal of Cleaner Production, 2018,203:685-695.
    [19] ZHENG J J, MA J X, WANG Z W, et al. Contaminant removal from source waters using catholic electrochemical membrane filtration:mechanisms and implications[J]. Environmental Science and Technology, 2017,51:2757-2765.
    [20] VARANK G, GUVENC S Y, DINCER K, et al. Concentrated leachate treatment by electro-Fenton and electro-persulfate processes using central composite design[J]. International Journal of Environmental Research, 2020,14:439-461.
    [21] YI Q Y, JI J H, SHEN B, et al. Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic Fenton reaction with enhanced REDOX activity in the environment[J]. Environmental Science and Technology, 2019,53:9725-9733.
    [22] LING R, YU L, PHAM T P, SHAO T, et al. The tolerance of a thin-film composite polyamide reverse osmosis membrane to hydrogen peroxide exposure[J]. Journal of Membrane Science, 2017,54:529-536.
    [23] WANG Q N, LIU M Y, ZHAO H Y, et al. Efficiently degradation of perfluorooctanoic acid in synergic electrochemical process combining cathodic electro-Fenton and anodic oxidation[J]. Chemical Engineering Journal, 2019,378:510-518.
    [24] CHEN M, XU J, DAI R B, et al. Development of a moving-bed electrochemical membrane bioreactor to enhance removal of low-concentration antibiotic from wastewater[J]. Bioresource Technology, 2019, 293:122022.
    [25] WANG Z W, HUANG J, ZHU C W, et al. A bioelectrochemically-assisted membrane bioreactor for simultaneous wastewater treatment and enery production. Chemical Engineering and Technology, 2013, 36(12):2044-2050.
    [26] LIN H, ZHANG H, WANG X, et al. Electro-Fenton removal of Orange Ⅱ in a divided cell:Reaction mechanism, degradation pathway and toxicity evolution[J]. Separation and Purification Technology, 2014,122(3):533-540.
    [27] ZHENG J J, WANG Z W, MA J X, et al. Development of an electrochemical ceramic membrane filtration system for efficient contaminant removal from waters[J]. Environmental Science and Technology, 2018,52:4117-4126.
    [28] LIANG P Y, RIVALLIN M, CERNEAUX S, et al. Coupling cathodic electro-Fenton reaction to membrane filtration for AO7 dye degradation:a successful feasibility study[J]. Journal of Membrane Science, 2016,510:182-190.
    [29] WANG C, LIU Y B, ZHOU T. Efficient decomposition of sulfamethoxazole in a novel neutral fered-Fenton like/oxalate system based on effective heterogeneous-homogeneous iron cycle[J]. Chinese Chemical Letters, 2019,30(12):2231-2235.
    [30] ISHAK S, MALAKAHMAD A. Optimization of Fenton process for refinery wastewater biodegradeability augmentation[J]. Chemical Engineering Journal, 2013,2:1-8.
  • 加载中
计量
  • 文章访问数:  168
  • HTML全文浏览量:  38
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-06
  • 网络出版日期:  2022-07-06

目录

    /

    返回文章
    返回