PILOT TEST STUDY ON BORON REMOVAL BY ION EXCHANGE IN DRINKING WATER TREATMENT IN ALPINE REGIONS
-
摘要: 温度影响物质在环境中的存在形态及其生化反应速率,而高寒地区由于常年低温,常规处理方式是否能有效去除该地区污染物仍有待研究。基于此,选用硼选择性螯合树脂处理某高寒地区硼超标地下水,通过现场中试探讨工艺运行参数及效果,采用FTIR、SEM和BET表征探究树脂除硼机理。结果表明:16 BV/h(BV:树脂床体积,1 BV=22.5 L)的进水流速适用于该工程,此时的出水水质可达到GB 5749—2006《生活饮用水卫生标准》;树脂柱的穿透点为871.11 BV,树脂的交换容量为3.58 mg/g;树脂再生水中硼浓度为342.81 mg/L,可用作硼产品生产原料。树脂除硼后,树脂表面羟基官能团含量和孔容减少,且表面出现明显的褶皱,说明树脂对硼的去除过程包括颗粒内扩散和螯合过程。该试验结果可为高寒地区硼超标水处理提供理论支持和技术参考。Abstract: Temperature affects the existent forms of substances and the rate of biochemical reaction in environmental mediums. Based on this, boron selective chelating resin was used to treat the groundwater with boron concentration exceeding the standard in an alpine region. The operation parameters and performance of the process were determined by field pilot test. And the mechanism of resin boron removal was explored by FTIR, SEM and BET characterization. The results showed that the inlet velocity of 16 BV/h (bed volume; 1 BV=22.5 L) was suitable for the project, and the effluent water quality met the Hygiene Standard for Drinking Water (GB 5749—2006). The penetration point of resin column was 871.11 BV, and the exchange capacity of resin was 3.58 mg/g; the boron content of wastewater generated during resin regeneration was 342.81 mg/L, which could be used as the raw material for boron production. After the boron removal test, the hydroxyl functional group content and pore volume on the surface of the resin were reduced, and obvious wrinkles appeared on the surface, indicating that boron was removed by intra-particle diffusion and chelation process. The results of this experiment can provide theoretical support and technical reference for the treatment of boron in alpine region.
-
Key words:
- groundwater /
- ion exchange /
- boron /
- low temperature /
- alpine region
-
[1] HILAL N, KIM G J, SOMERFIELD C. Boron removal from saline water:a comprehensive review[J]. 2010, 273(1):23-35. [2] GUIDI L, INNOCENTI E D, CARMASSI G, et al. Effects of boron on leaf chlorophyll fluorescence of greenhouse tomato grown with saline water[J]. 2010, 73:57-63. [3] YILDIRIM K, KASIM G C. Phytoremediation potential of poplar and willow species in small scale constructed wetland for boron removal[J]. 2018, 194:722-736. [4] 魏春,邢小茹,张海波,等.宽甸县水中硼的背景浓度及污染现状分析[J].生态学杂志,2005,24(3):327-329. [5] XU R J, XING X R, ZHOU Q F, et al. Investigations on boron levels in drinking water sources in China[J]. Environmental Monitoring and Assessment,2010,165:15-25. [6] 孙思奥,任宇飞,张蔷.多尺度视角下的青藏高原水资源短缺估算及空间格局[J].地球信息科学学报,2019,21(9):1308-1317. [7] TURKER O C, BARAN T. A combination method based on chitosan adsorption and duckweed (Lemna gibba L.) phytoremediation for boron (B) removal from drinking water[J]. International Journal of Phytoremediation,2018,20(2):175-183. [8] GEORGHIOU G, PASHALIDIS I. Boron in groundwaters of Nicosia (Cyprus) and its treatment by reverse osmosis[J]. Desalination,2006, 215(1):104-110. [9] 侯若昕,顾平,韦晓竹,等.水中硼的去除方法研究进展[J].工业水处理,2012,32(3):14-18. [10] 时玥,吴克宏.离子交换树脂脱除淡化海水中微量硼的研究进展[J].环境科学与技术,2010,33(增刊2):450-452. [11] 张一帆,王志伟,安莹,等.离子交换树脂吸附铵性能研究[J].环境工程,2014,32(1):55-59. [12] 罗婷,蒋珍茂,任志杰,等.树脂基纳米零价铁复合材料的制备及其去除重金属铅Pb (Ⅱ)的性能研究[J].环境工程,2015,33(5):1-4,80. [13] LIU H N, YE X S, LI Q, et al. Boron adsorption using a new boron-selective hybrid gel and the commercial resin D564[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2009, 341(1):118-126. [14] 杜佳佳,屈撑囤,鱼涛.XSC-700树脂对压裂返排液中硼的吸附研究[J].化学工程,2019,47(8):29-34. [15] KALAITZIDOU K, TZIKA A M, SIMEONIDIS K, et al. Evaluation of boron uptake by anion exchange resins in tap and geothermal water matrix[J]. Materials Today:Proceedings, 2018, 5(14):27599-27606. [16] 杨魁.固定床离子交换除盐系统的应用探究[J].中国设备工程,2019,4(7):132-133. [17] 乔明晨,陈兴权,乔春生.废水中硼的去除工艺试验与研究[J].工业水处理,2021,41(7):130-133,160. [18] KLUCZKA J, DUDEK G, KESIK A K, et al. Chitosan hydrogel beads supported with ceria for boron removal[J]. International Journal of Molecular Sciences, 2019, 20(7):1567. [19] DARWISH N B, KOCHKODAN V, HILAL N. Boron removal from water with fractionized Amberlite IRA743 resin[J]. Desalination,2015,370:1-6. [20] NALAN K. Removal of boron from seawater by selective ion exchange resins[J]. Reactive and Functional Polymers, 2007, 67(12):1643-1650. [21] ALKA T. Rapid and efficient removal of boron from deep sea water using synthesized polymer resin[J]. Desalination and Water Treatment, 2016, 57(5):2134-2141. [22] 田明,李玉丹,时雅滨.固定床离子交换树脂对K+吸附特性的研究[J].离子交换与吸附,2021,37(2):175-182. [23] 张亚鹏,朱洪霞,刘鑫,等.D201树脂吸附富马酸的机理及动力学分析[J].离子交换与吸附,2020,36(4):346-356. [24] 江莉,高万飞.固定床离子交换除盐系统的运行优化[J].大氮肥,2016,39(3):214-216. [25] 时玥,汪毅,马颖.D564树脂工艺对海水淡化中微量硼的去除[J].净水技术,2017,36(12):55-61. [26] INGLEZAKIS V J, FYRILLAS M M, PARK J. Variable diffusivity homogeneous surface diffusion model and analysis of merits and fallacies of simplified adsorption kinetics equations[J]. Journal of Hazardous Materials, 2019, 367:224-245. [27] BONIN L. Boron extraction using selective ion exchange resins enables effective magnesium recovery from lithium rich brines with minimal lithium loss[J]. Separation and Purification Technology, 2021, 275:119177. [28] CHEN Y Z, LYU J F, WANG Y M, et al. Synthesis, characterization, adsorption, and isotopic separation studies of pyrocatechol-modified MCM-41 for efficient boron removal[J]. Industrial&Engineering Chemistry Research,2019, 58(8):3282-3292. [29] HUSSAIN A, SHARMA R, MATAR J M, et al. Application of emerging ion exchange resin for boron removal from saline groundwater[J]. Journal of Water Process Engineering, 2019, 32:100906. [30] 邹晓勇,陈民仁.离子交换法除硫酸锰溶液中钴镍的中试研究[J].广州化工,2019,47(6):52-54. [31] KAYACI S, ERSOLMAZ S B, AHUNBAY M G, et al. Technical and economic feasibility of the concurrent desalination and boron removal (CDBR) process[J]. Desalination,2020,486:114474. [32] 李为兵,陈卫,袁哲,等.磁性离子交换树脂处理南方湖泊水的中试研究[J].中国给水排水,2011,27(1):5-7.
点击查看大图
计量
- 文章访问数: 140
- HTML全文浏览量: 23
- PDF下载量: 5
- 被引次数: 0