RESEARCH ON GROUNDWATER POLLUTION SITUATION IN CHIFENG LANDFILL AND CAUSE ANALYSIS
-
摘要: 近年来,我国地下水污染问题日益突出,填埋场已成为我国公认的地下水重点污染源之一。通过对赤峰垃圾填埋场及其周边地下水环境的系统检测分析,采用单因子指数法及综合评价法对现状地下水进行质量评价,通过主成分分析及Pearson相关性分析开展地下水污染成因解析。基于地下水历史检测数据,对照GB/T 14848—2017《地下水质量标准》中Ⅲ类水体指标限值,2018年12月—2020年8月研究区地下水历史超标指标有氨氮、硫化物、氟化物、总大肠菌群及部分感官性状指标,超标频次11%~90%,超标倍数1.01~120。除氨氮及氟化物,超标物浓度整体呈降低趋势。2020年9月超标物质仅氟化物和总大肠菌群,超标倍数在1.03~1.37。根据Pearson相关性及主成分分析结果,结合大肠菌群的特点,判断填埋场内总大肠菌群超标主要由监测井洗井不充分及周边人类活动影响导致。由该地区地层岩性、地下水化学类型等,结合文献调研,判断氟化物超标主要由水文地质条件决定。氨氮浓度水平波动性较大,各点位均出现历史超标现象。根据背景点与各监测点氨氮浓度的正相关性(P<0.01, R≥0.655),以及渗滤液对场内地下水氨氮浓度贡献率为30.37%等,判断其超标成因主要包括垃圾渗滤液及上游地区农业、农村面源污染。Abstract: In recent years, groundwater pollution is becoming more and more serious in China. Domestic waste landfill has become one of the most important sources of groundwater pollution in China. In this paper, the groundwater environment of Chifeng landfill site and its surroundings were systematically tested. Single factor index method and comprehensive evaluation method were used to evaluate the quality of present groundwater. The causes of groundwater pollution were analyzed by factor analysis and Pearson correlation analysis. Based on the historical detection data, the substances exceeding the standard including ammonia nitrogen, sulfide, fluoride, total coliform and part of the sensory traits in contrast to the limit value of Ⅲ water body in China’s national standard Groundwater Quality Standard (GB/T 14848—2017). The exceedance frequency was between 11% and 90%. The exceedance multiple ranged from 1.01 to 120. In addition to ammonia nitrogen and fluoride, the concentration of superstandard substances showed a decreasing trend. The main excess substances were fluoride and total coliformsat at present. The overshoot multiple was between 1.03 and 1.37. According to factor analysis and Pearson correlation analysis, combined with the characteristics of total coliforms, the excessive total coliform population was mainly caused by inadequate well cleaning and human activities around the site. Combined with literature research and formation lithology, superstandard fluoride was mainly determined by hydrogeological condition. The concentration of ammonia nitrogen fluctuated greatly, and all points exceeded the historical standard. For the concentration of ammonia nitrogen, there was a positive correlation between the background point and other monitoring points (P<0.01, R≥0.655). The contribution rate of leachate to the nitrogen in groundwater was 30.37%. The non-point source pollution in the upstream area and the influence of landfill leachate were the main reasons.
-
Key words:
- landfill /
- groundwater /
- pollution /
- evaluation /
- cause
-
[1] 屈吉鸿,李潇,张艺锋,等.新乡市化工集聚区地下水化学特征及成因分析[J].科学技术与工程,2019,19(34):95-102. [2] 2019中国生态环境状况公报[R].北京:中华人民共和国生态环境部,2020. [3] 韩智勇,许模,刘国,等.生活垃圾填埋场地下水污染物识别与质量评价[J].中国环境科学,2015,35(9):2843-2852. [4] 周巧丽,宋玉梅,周漪波,等.广州市某生活垃圾填埋场空气及地下水污染状况分析[J].环境化学,2019,38(4):760-769. [5] 黄萌.垃圾填埋场对周边地下水环境影响研究[D].济南:山东建筑大学,2016. [6] 朱帆济,舒武堂,刘佑祥,等.武汉市金口垃圾填埋场对周边环境的影响分析[J].土工基础,2018, 32(1):27-30,63. [7] 姚建刚,龙伟,李清毅,等.四川红层地区简易垃圾填埋场地下水污染现状调查及防治对策[J].四川环境,2018,37(3):79-84. [8] 刘兆鑫,蒋晓璐,林冬红,等.深圳市某正规生活垃圾填埋场地下水水质现状调查[J].环境保护与循环经济,2019,39(3):58-62. [9] 刘靖宇,卫杰,赵丽,等.豫中平原区某城市生活垃圾填埋场地下水水质评价[J].地下水,2018,40(6):21-23,83. [10] 雷抗,李瑞,李鸣晓,等.海积平原区浅层地下水污染在线监测预警指标的确定:以天津市某简易生活垃圾填埋场为例[J].环境工程,2018,36(11):179-184. [11] 蔡五田,章爱卫,张敏,等.石油污染地下水取样方式对比试验研究[J].地学前缘,2014,21(4):168-179. [12] 姬红英.纳污河流影响下土壤和地下水中Cl-时空变化特征研究[D].焦作:河南理工大学,2016. [13] 郑玉虎,吴明洲,徐爱兰,等.考虑土壤吸附作用的地下水污染物运移特征研究[J].地下水,2017,39(3):4-7. [14] 杜青青,尹芝华,左锐,等.某污染场地氨氮迁移过程模拟研究[J].中国环境科学,2017,37(12):4585-4595. [15] TIM U S, MOSTAGHIMI S, DILLAHA III T A. Modeling the movement and persistence of bacteria and viruses in porous media[J]. American Society of Agricultural Engineers (Microfiche collection), 1988,88(18):2627. [16] HYUNJUNG N K, SHARON L W, SCOTT A B. Macromolecule mediated transport and retention of Escherichia coli O157:H7 in saturated porous media[J]. Water Resources Research, 2010, 44(4):1082-1093. [17] BRADFORD S A, TORKZABAN S, SHAPIRO A. A theoretical analysis of colloid attachment and straining chemically heterogeneous porous media[J]. Langmuir, 2013, 29(23):6944-6952. [18] 张麟杰,王淦淦,张利兰,等.重庆市河水中粪源微生物污染特征及源解析[J].中国环境科学,2019,39(3):1253-1260. [19] 王月,安达,席北斗,等.某基岩裂隙水型危险废物填埋场地下水污染特征分析[J].环境化学,2016,35(6):1196-1202. [20] 段逸凡,贺秋芳,刘子琦,等.岩溶区地下水微生物污染特征及来源:以重庆南山老龙洞流域为例[J].中国岩溶,2014,33(4):504-511. [21] 陈战利,廖宝誉,王灿,等.国内外最新饮用水标准中微生物指标的对比分析[J].绿色科技,2020(20):79-81. [22] 朱丹尼,邹胜章,周长松,等.不同城镇功能区岩溶地下水化学敏感因子识别[J].中国岩溶,2018,37(4):484-492. [23] 袁晓燕,余志敏,施卫明.大清河小流域城郊型面源污染现状与对策研究[J].环境科学与技术,2010,33(9):19-30. [24] 张涵,李奇翎,郭珊珊,等.成都平原典型区地下水污染时空异质性及污染源分析[J].环境科学学报,2019,39(10):3516-3527. [25] 潘田,张幼宽.太湖流域长兴县浅层地下水氮污染特征及影响因素研究[J].水文地质工程地质,2013,40(4):7-12. [26] 韩颖,张宏民,张永峰,等.大同盆地地下水高砷、氟、碘分布规律与成因分析及质量区划[J].中国地质调查,2017,4(1):57-68. [27] 裴圣良,白光宇,田磊,等.内蒙古新巴尔虎右旗高氟水分布特征及成因分析[J].地球与环境,2020,48(2):203-209. [28] 郝启勇,徐晓天,张心彬,等.鲁西北阳谷地区浅层高氟地下水化学特征及成因[J].地球科学与环境学报,2020,42(5):668-677. [29] 刘庆.珠三角地区典型污染源及地下水中全氟化合物的分布特征研究[D].兰州:兰州交通大学,2014. [30] 何锦,张福存,韩双宝,等.中国北方高氟地下水分布特征和成因分析[J].中国地质,2010,37(3):621-626.
点击查看大图
计量
- 文章访问数: 492
- HTML全文浏览量: 35
- PDF下载量: 27
- 被引次数: 0