ANALYSIS OF THE DIFFERENCE BETWEEN GF-6 AND LANDSAT-8 IN WATER QUALITY MONITORING
-
摘要: 针对GF-6与Landsat-8影像在水质监测中的差异性问题,以巢湖水质富营养状态评价为研究内容,对水质参数进行反演,利用综合营养状态指数法构建水质评价模型。运用ENVI 5.3和ArcGIS 10.3软件,实现各项水质参数和综合营养状态指数TLI可视化。对比实测数据,运用Person相关性模型进行反演结果精度评定。结果表明:影像成像时刻巢湖水质营养状态为中营养;GF-6和Landsat-8反演得到的综合营养状态指数TLI分别为42.75和42.13,两者差别较小,但经过与实测数据的相关性分析可得,GF-6和Landsat-8的Person系数分别为0.988和0.965,表明GF-6反演的数据与实测值相关性更强,更加准确可靠。研究结论可为水质监测中如何选用遥感影像数据提供参考。Abstract: In view of the difference between GF-6 and Landsat-8 images in water quality monitoring, the eutrophication assessment of water quality in Chao Lake was taken as the research content, the water quality parameters were inversed, and the water quality assessment model was constructed by using the method of integrated nutritional state index. Using ENVI 5.3 and ArcGIS 10.3 software, the visualization of water quality parameters and TLI was realized. Compared with the measured data, the accuracy of the inversion result was evaluated by using Pearson correlation model. The main conclusions were as follows: the nutrient status of the water quality in Chao Lake at the time of imaging was medium nutrient; the comprehensive nutrient status index TLI derived from GF-6 and Landsat-8 were 42.75 and 42.13 respectively, and there was no significant difference between them, however, the coefficients of GF-6 and Landsat-8 were 0.988 and 0.965, respectively, indicating that GF-6 was more accurate and reliable. The conclusion could provide reference for selecting remote sensing image data in water quality monitoring.
-
Key words:
- GF-6 /
- Landsat-8 /
- Chaohu Lake /
- water quality monitoring /
- difference
-
[1] 徐涵秋,唐菲.新一代Landsat系列卫星:Landsat 8遥感影像新增特征及其生态环境意义[J].生态学报,2013,33(11):3249-3257. [2] 张丽华,武捷春,包玉海,等.基于MODIS数据的乌梁素海水体遥感监测[J].环境工程,2016,34(3):161-165. [3] 朱利,姚延娟,吴传庆,等.基于环境一号卫星的内陆水体水质多光谱遥感监测[J].地理与地理信息科学,2010,26(2):81-84,113. [4] 朱利,李云梅,赵少华,等.基于GF-1号卫星WFV数据的太湖水质遥感监测[J].国土资源遥感,2015,27(1):113-120. [5] 汪雨豪,李家国,汪洁,等.基于GF-2影像的苏州市区水质遥感监测[J].科学技术与工程,2020,20(14):5875-5885. [6] 白开源.基于3S技术的湖泊富营养化监测与评价系统[D].武汉:华中科技大学,2019. [7] LEI F, YU Y, ZHANG D, et al. Water remote sensing eutrophication inversion algorithm based on multilayer convolutional neural network[J]. Journal of Intelligent&Fuzzy Systems,2020, 39(4):5319-5327. [8] 刘文雅,邓孺孺,梁业恒,等.基于辐射传输模型的巢湖叶绿素a浓度反演[J].国土资源遥感,2019,31(2):102-110. [9] 王小平.遥感和三维荧光技术支持的艾比湖流域地表水水质监测研究[D].乌鲁木齐:新疆大学,2018. [10] 雷添杰,张鹏鹏,胡连兴,等.无人船遥感系统及其应用[J].测绘通报,2021(2):82-86,92. [11] BAI S, GAO J, SUN D, et al. Monitoring water transparency in shallow and eutrophic lake waters based on goci observations[J]. Remote Sensing, 2020, 12(1):163. [12] NAZIROVA K, ALFERYEVA Y, LAVROVA O, et al. Comparison of in situ and remote-sensing methods to determine turbidity and concentration of suspended matter in the estuary zone of the Mzymta river, black sea[J]. Remote Sensing, 2021, 13(1):143-143. [13] 但雨生,周忠发,李韶慧,等.基于Sentinel-2的平寨水库叶绿素a浓度反演[J].环境工程, 2020,38(3):180-185,127. [14] 张东彦,尹勋,佘宝,等.多源卫星遥感数据监测巢湖蓝藻水华爆发研究[J].红外与激光工程,2019,48(7):303-314. [15] 谭小琴,罗勇,赵铮,等.基于高分遥感的河流水质反演研究:以金马河温江段为例[J].环境生态学,2020,2(7):29-36.
点击查看大图
计量
- 文章访问数: 138
- HTML全文浏览量: 8
- PDF下载量: 2
- 被引次数: 0