NITROGEN REMOVAL FROM MUNICIPAL WASTEWATER BY ANAEROBIC AMMONIA OXIDATION: CHALLENGES AND SOLUTIONS
-
摘要: 基于厌氧氨氧化(Anammox)的高效自养脱氮技术用于城市污水处理为污水处理厂的能量自给运行提供了可能。首先,简述了污水Anammox自养脱氮的反应过程和技术优势,然后重点从亚硝酸盐氧化细菌(NOB)抑制、厌氧氨氧化细菌(AnAOB)富集截留以及AnAOB与好氧氨氧化细菌(AOB)等之间平衡调控3个方面总结分析了Anammox自养脱氮技术用于城市污水处理面临的挑战及其应对策略。最后展望了城市污水Anammox自养脱氮技术的未来研究方向。Abstract: Anaerobic ammonia oxidation (Anammox)-based high performance nitrogen removal from municipal wastewater provides the possibility of energy self-sufficient operation for municipal wastewater treatment plants (MWTPs). Firstly, the process and advantages of Anammox nitrogen removal are reviewed in this article. Then the challenges and solutions of the application of Anammox-based autotrophic nitrogen removal technology in MWTPs are analyzed, including nitrite oxidizing bacteria (NOB) inhibition, anaerobic ammonia oxidizing bacteria (AnAOB) enrichment and retention, and the balance control between AnAOB and aerobic ammonia oxidizing bacteria (AOB). Finally, future research directions of the nitrogen removal from municipal wastewater via Anammox were proposed.
-
Key words:
- municipal wastewater /
- Anammox /
- nitritation /
- NOB inhibition /
- balance control
-
[1] WETT B, BUCHAUER K, FIMML C. Energy self-sufficiency as a feasible concept for wastewater treatment systems[C]//In IWA Leading Edge Technology Conference. Asian Water Singapore. 2007. [2] MCCARTY P L, BAE J, KIM J, et al. Domestic wastewater treatment as a net energy producer-Can this be achieved?[J]. Environmental Science Technology, 2011, 45(17):7100-7106. [3] KARTAL B, KUENEN J, LOOSDRECHT C M V M. Sewage treatment with anammox[J]. Science, 2010, 328(5979):702-703. [4] SIEGRIST H, SALZGEBER D, EUGSTER J, et al. Anammox brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-removal[J]. Water Science Technology, 2008, 57(3):383-388. [5] LACKNER S, GILBERT E M, VLAEMINCK S E, et al. Full-scale partial nitritation/anammox experiences:an application survey[J]. Water Research, 2014, 55:292-303. [6] 郝晓地,仇付国, Star RL Van Der W,等.厌氧氨氧化技术工程化的全球现状及展望[J].中国给水排水, 2007, 23(18):15-19. [7] HENDRICKX T L G, WANG Y, KAMPMAN C, et al. Autotrophic nitrogen removal from low strength waste water at low temperature[J]. Water Research, 2012, 46(7):2187-2193. [8] WETT B, PODMIRSEG S M, GOMEZ-BRANDON M, et al. Expanding DEMON sidestream deammonification technology towards mainstream application[J]. Water Environment Research, 2015, 87(12):2084-2089. [9] CAO Y, KWOK B H, YONG W H, et al. Mainstream partial nitritation-ANAMMOX nitrogen removal in the largest full-scale activated sludge process in Singapore:process analysis[C]//Proc. WEF/IWA Nutrient Removal and Recovery Conference, 2013:28-31. [10] WINKLER M K, KLEEREBEZEM R, LOOSDRECHT C M V M. Integration of anammox into the aerobic granular sludge process for main stream wastewater treatment at ambient temperatures[J]. Water Research, 2012, 46(1):136-144. [11] SIN G, KAELIN D, KAMPSCHREUR M J, et al. Modelling nitrite in wastewater treatment systems:a discussion of different modelling concepts[J]. Water Science and Technology, 2008, 58(6):1155-1171. [12] LAURENI M, WEISSBRODT D G, VILLEZ K, et al. Biomass segregation between biofilm and flocs improves the control of nitrite-oxidizing bacteria in mainstream partial nitritation and anammox processes[J]. Water Research, 2019, 154:104-116. [13] AGRAWAL S, SEUNTJENS D, COCKER P, et al. Success of mainstream partial nitritation/anammox demands integration of engineering, microbiome and modeling insights[J]. Current Opinion in Biotechnology, 2018, 50:214-221. [14] 卢健聪,高大文,孙学影.基于能源回收的城市污水厌氧氨氧化生物脱氮新工艺[J].环境科学, 2013, 34(4):1435-1441. [15] HELLINGA C, SCHELLEN A, MULDER J W, et al. The SHARON process:an innovative method for nitrogen removal from ammonium-rich waste water[J]. Water Science and Technology, 1998, 37(9):135-142. [16] ZENG W, ZHANG Y, LI L, et al. Control and optimization of nitrifying communities for nitritation from domestic wastewater at room temperatures[J]. Enzyme Microbial Technology, 2009, 45(3):226-232. [17] HOANG V, DELATOLLA R, ABUJAMEL T, et al. Nitrifying moving bed biofilm reactor (MBBR) biofilm and biomass response to long term exposure to 1℃[J]. Water Research, 2014, 49:215-224. [18] WHANG L M, CHIEN I C, YUAN S L, et al. Nitrifying community structures and nitrification performance of full-scale municipal and swine wastewater treatment plants[J]. Chemosphere, 2009, 75(2):234-242. [19] HUANG Z, GEDALANGA P B, ASVAPATHANAGUL P, et al. Influence of physicochemical and operational parameters on Nitrobacter and Nitrospira communities in an aerobic activated sludge bioreactor[J]. Water Research, 2010, 44(15):4351-4358. [20] BLACKBURNE R, VADIVELU V M, YUAN Z, et al. Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter [J]. Water Research, 2007, 41(14):3033-3042. [21] SCHRAMM A, de BEER D, van den HEUVEL J C, et al. Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor:quantification by in situ hybridization and the use of microsensors[J]. Applied Environmental Microbiology, 1999, 65(8):3690-3696. [22] NOGUEIRA R, Melo L F. Competition between Nitrospira spp. and Nitrobacter spp. in nitrite-oxidizing bioreactors[J]. Biotechnology Bioengineering, 2006, 95(1):169-175. [23] SIRIPONG S, RITTMANN B E. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants[J]. Water Research, 2007, 41(5):1110-1120. [24] KIM D J, KIM S H. Effect of nitrite concentration on the distribution and competition of nitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics[J]. Water Research, 2006, 40(5):887-894. [25] GILBERT E M, AGRAWAL S, BRUNNER F, et al. Response of different Nitrospira species to anoxic periods depends on operational DO[J]. Environmental Science Technology, 2014, 48(5):2934-2941. [26] SLIEKERS A O, HAAIJER S C M, STAFSNES M H, et al. Competition and coexistence of aerobic ammonium-and nitrite-oxidizing bacteria at low oxygen concentrations[J]. Applied Microbiology Biotechnology, 2005, 68(6):808-817. [27] LIU G, WANG J. Long-term low do enriches and shifts nitrifier community in activated sludge[J]. Environmental Science Technology, 2013, 47(10):5109-5117. [28] LVCKER S, WAGNER M, MAIXNER F, et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria[J]. Proceedings of the National Academy of Sciences, 2010, 107(30):13479-13484. [29] 李冬,赵世勋,王俊安,等.污水处理厂厌氧氨氧化工艺小试[J].环境科学, 2018, 39(2):859-864. [30] JOSS A, DERLON N, CYPRIEN C, et al. Combined nitritation-anammox:advances in understanding process stability[J]. Environmental Science Technology, 2011, 45(22):9735-9742. [31] PUYOL D, CARVAJAL-ARROYO J M, SIERRA-ALVAREZ R, et al. Nitrite (not free nitrous acid) is the main inhibitor of the anammox process at common pH conditions[J]. Biotechnology Letters, 2014, 36(3):547-551. [32] WETT B. Development and implementation of a robust deammonification process[J]. Water Science Technology, 2007, 56(7):81-88. [33] LOTTI T, van der STAR W R L, KLEEREBEZEM R, et al. The effect of nitrite inhibition on the anammox process[J]. Water Research, 2012, 46(8):2559-2569. [34] van der STAR W R L, ABMA W R, BLOMMERS D, et al. Startup of reactors for anoxic ammonium oxidation:experiences from the first full-scale anammox reactor in Rotterdam[J]. Water Research, 2007, 41(18):4149-4163. [35] MA B, PENG Y, ZHANG S, et al. Performance of anammox UASB reactor treating low strength wastewater under moderate and low temperatures[J]. Bioresource Technology, 2013, 129:606-611. [36] DE CLIPPELEIR H, VLAEMINCK S E, DE WILDE F, et al. One-stage partial nitritation/anammox at 15 C on pretreated sewage:feasibility demonstration at lab-scale[J]. Applied Microbiology Biotechnology, 2013, 97(23):10199-10210. [37] VÁZQUEZ-PADÍN J R, FERNÁNDEZ I, MORALES N, et al. Autotrophic nitrogen removal at low temperature[J]. Water Science Technology, 2011, 63(6):1282-1288. [38] CHANDRAN K, SMETS B F. Single-step nitrification models erroneously describe batch ammonia oxidation profiles when nitrite oxidation becomes rate limiting[J]. Biotechnology Bioengineering, 2000, 68(4):396-406. [39] REGMI P, MILLER M W, HOLGATE B, et al. Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation[J]. Water Research, 2014, 57:162-171. [40] 刘文如,杨殿海,沈耀良,等.主流条件下两级式PN-ANAMMOX工艺的高效能脱氮过程[J].环境科学, 2018, 39(12):5580-5586. [41] 赵青,卞伟,李军,等. DO/NH+4-N调控实现MBBR工艺生活污水短程硝化[J].中国环境科学,2017,37(12):4511-4517. [42] WETT B, OMARI A, PODMIRSEG S M, et al. Going for mainstream deammonification from bench to full scale for maximized resource efficiency[J]. Water Science Technology, 2013, 68(2):283-289. [43] DYTCZAK M A, LONDRY K L, OLESZKIEWICZ J A. Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates[J]. Water Research, 2008, 42(8/9):2320-2328. [44] GAO D W, LU J C, LIANG H. Simultaneous energy recovery and autotrophic nitrogen removal from sewage at moderately low temperatures[J]. Applied Microbiology Biotechnology, 2014, 98(6):2637-2645. [45] YANG Q, PENG Y Z, LIU X H, et al. Nitrogen removal via nitrite from municipal wastewater at low temperatures using real-time control to optimize nitrifying communities[J]. Environmental Science Technology, 2007, 41(23):8159-8164. [46] KORNAROS M, DOKIANAKIS S, LYBERATOS G. Partial nitrification/denitrification can be attributed to the slow response of nitrite oxidizing bacteria to periodic anoxic disturbances[J]. Environmental Science Technology, 2010, 44(19):7245-7253. [47] PELLICER-NÀCHER C, SUN S, LACKNER S, et al. Sequential aeration of membrane-aerated biofilm reactors for high-rate autotrophic nitrogen removal:experimental demonstration[J]. Environmental Science Technology, 2010, 44(19):7628-7634. [48] GE S J, PENG Y Z, QIU S, et al. Complete nitrogen removal from municipal wastewater via partial nitrification by appropriately alternating anoxic/aerobic conditions in a continuous plug-flow step feed process[J]. Water Research, 2014, 55:95-105. [49] YANG S, YANG F L. Nitrogen removal via short-cut simultaneous nitrification and denitrification in an intermittently aerated moving bed membrane bioreactor[J]. Journal of Hazardous Materials, 2011, 195:318-323. [50] KORNAROS M, MARAZIOTI C, LYBERATOS G. A pilot scale study of a sequencing batch reactor treating municipal wastewater operated via the UP-PND process[J]. Water Science Technology, 2008, 58(2):435-438. [51] BLACKBURNE R, YUAN Z, KELLER J. Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater[J]. Water Research, 2008, 42(8):2166-2176. [52] KATSOGIANNIS A, KORNAROS M, LYBERATOS G. Enhanced nitrogen removal in SBRs bypassing nitrate generation accomplished by multiple aerobic/anoxic phase pairs[J]. Water Science Technology, 2003, 47(11):53-59. [53] GUO J H, PENG Y Z, WANG S Y, et al. Effective and robust partial nitrification to nitrite by real-time aeration duration control in an SBR treating domestic wastewater[J]. Process Biochemistry, 2009, 44(9):979-985. [54] BOURNAZOU M N C, HOOSHIAR K, ARELLANO-GARCIA H, et al. Model based optimization of the intermittent aeration profile for SBRs under partial nitrification[J]. Water Research, 2013, 47(10):3399-3410. [55] SALEM S, M MOUSSA, M. VAN LOOSDRECHT C M V M. Determination of the decay rate of nitrifying bacteria[J]. Biotechnology Bioengineering, 2006, 94(2):252-262. [56] JARDIN N, HENNERKES J. Full-scale experience with the deammonification process to treat high strength sludge water-a case study[J]. Water Science Technology, 2012, 65(3):447-455. [57] HENZE M. Biological wastewater treatment:principles, modelling and design[C]//IWA Publishing, 2008. [58] AL-OMARI A, WETT B, HAN M, et al. Competition over nitrite in single sludge mainstream deammonification process[C]//WEF/IWA Nutrient Removal and Recovery 2013:Trends in Resource Recovery and Use. Water Environment Federation (WEF); International Water Association (IWA), 2013. [59] WINKLER M K H, KLEEREBEZEM R, KUENEN J G, et al. Segregation of biomass in cyclic anaerobic/aerobic granular sludge allows the enrichment of anaerobic ammonium oxidizing bacteria at low temperatures[J]. Environmental Science Technology, 2011, 45(17):7330-7337. [60] HAO X D, HEIJNEN J J, van LOOSDRECHT M C M. Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process[J]. Biotechnology Bioengineering, 2002, 77(3):266-277. [61] WETT B, HELL M, NYHUIS G, et al. Syntrophy of aerobic and anaerobic ammonia oxidisers[J]. Water Science Technology, 2010, 61(8):1915-1922. [62] JENNI S, VLAEMINCK S E, MORGENROTH E, et al. Successful application of nitritation/anammox to wastewater with elevated organic carbon to ammonia ratios[J]. Water Research, 2014, 49:316-326. [63] EKAMA G. The role and control of sludge age in biological nutrient removal activated sludge systems[J]. Water Science Technology, 2010, 61(7):1645-1652. [64] DESLOOVER J, De CLIPPELEIR H, BOECKX P, et al. Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions[J]. Water Research, 2011, 45(9):2811-2821. [65] AHN J H, YU R, CHANDRAN K. Distinctive microbial ecology and biokinetics of autotrophic ammonia and nitrite oxidation in a partial nitrification bioreactor[J]. Biotechnology Bioengineering, 2008, 100(6):1078-1087. [66] JUBANY I, LAFUENTE J, BAEZA J A, et al. Total and stable washout of nitrite oxidizing bacteria from a nitrifying continuous activated sludge system using automatic control based on oxygen uptake rate measurements[J]. Water Research, 2009, 43(11):2761-2772. [67] POLLICE A, TANDOI V, LESTINGI C. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate[J]. Water Research, 2002, 36(10):2541-2546. [68] PENG Y Z, ZHU G B. Biological nitrogen removal with nitrification and denitrification via nitrite pathway[J]. Applied Microbiology Biotechnology, 2006, 73(1):15-26. [69] BARTROLI A, PEREZ J, CARRERA J. Applying ratio control in a continuous granular reactor to achieve full nitritation under stable operating conditions[J]. Environmental Science Technology, 2010, 44(23):8930-8935. [70] ISANTA E, REINO C, CARRERA J, et al. Stable partial nitritation for low-strength wastewater at low temperature in an aerobic granular reactor[J]. Water Research, 2015, 80:149-158. [71] ROSENWINKEL K H, CORNELIUS A. Deammonification in the moving-bed process for the treatment of wastewater with high ammonia content[J]. Chemical Engineering Technology, 2005, 28(1):49-52. [72] WINKLER M K H, KLEEREBEZEM R, KHUNJAR W O, et al. Evaluating the solid retention time of bacteria in flocculent and granular sludge[J]. Water Research, 2012, 46(16):4973-4980. [73] WANG Q L, YE L, JIANG G M, et al. Side-stream sludge treatment using free nitrous acid selectively eliminates nitrite oxidizing bacteria and achieves the nitrite pathway[J]. Water Research, 2014, 55:245-255. [74] YAO Y N, WANG Z Y, CRIDDLE C S. Robust nitritation of anaerobic digester centrate using dual stressors and timed alkali additions[J]. Environmental Science Technology, 2021, 55(3):2016-2026. [75] PENG L, XIE Y K, van BEECK W, et al. Return-sludge treatment with endogenous free nitrous acid limits nitrate production and N2O emission for mainstream partial nitritation/anammox[J]. Environmental Science Technology, 2020, 54(9):5822-5831. [76] JIANG C C, XU S C, WANG R J, et al. Achieving efficient nitrogen removal from real sewage via nitrite pathway in a continuous nitrogen removal process by combining free nitrous acid sludge treatment and DO control[J]. Water Research, 2019,161:590-600. [77] ZHENG M, LIU Y C, XIN J, et al. Ultrasonic treatment enhanced ammonia-oxidizing bacterial (AOB) activity for nitritation process[J]. Environmental Science Technology, 2016, 50(2):864-871. [78] PARK S, BAE W, RITTMANN B E, et al. Operation of suspended-growth shortcut biological nitrogen removal (SSBNR) based on the minimum/maximum substrate concentration[J]. Water Research, 2010, 44(5):1419-1428. [79] CHUNG J, BAE W, LEE Y W, et al. Shortcut biological nitrogen removal in hybrid biofilm/suspended growth reactors[J]. Process Biochemistry, 2007, 42(3):320-328. [80] BAE H, PARK K S, CHUNG Y C, et al. Distribution of anammox bacteria in domestic WWTPs and their enrichments evaluated by real-time quantitative PCR[J]. Process Biochemistry, 2010, 45(3):323-334. [81] INNEREBNER G, INSAM H, FRANKE-Whittle I H, et al. Identification of anammox bacteria in a full-scale deammonification plant making use of anaerobic ammonia oxidation[J]. Systematic Applied Microbiology, 2007, 30(5):408-412. [82] SALEM S, BERENDS D, van der ROEST H F, et al. Full-scale application of the BABE ® technology[J]. Water Science Technology, 2004, 50(7):87-96. [83] TSUSHIMA I, OGASAWARA Y, KINDAICHI T, et al. Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors[J]. Water Research, 2007, 41(8):1623-1634. [84] WETT B, NYHUIS G, TAKÁCS I, et al. Development of enhanced deammonification selector[J]. Water Environment Federation, 2010:2-6. [85] JOSS A, SALZGEBER D, EUGSTER J, et al. Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR[J]. Environmental Science Technology, 2009, 43(14):5301-5306. [86] JAROSZYNSKI L, OLESZKIEWICZ J. Autotrophic ammonium removal from reject water:partial nitrification and anammox in one-reactor versus two-reactor systems[J]. Environmental Technology, 2011, 32(3):289-294. [87] HAO X D, HEIJNEN J J, van LOOSDRECHT M C M. Model-based evaluation of temperature and inflow variations on a partial nitrification-ANAMMOX biofilm process[J]. Water Research, 2002, 36(19):4839-4849.
点击查看大图
计量
- 文章访问数: 215
- HTML全文浏览量: 45
- PDF下载量: 17
- 被引次数: 0