EXPERIMENTAL STUDY ON CO2 FIXATION COUPLED WITH WASTEWATER PURIFICATION BY CHLORELLA VULGARIS UNDER DIFFERENT AMMONIUM CONCENTRATIONS
-
摘要: 为探究小球藻同步固定CO2、净化废水及生产蛋白质的潜力,实验研究不同氨氮浓度(30,60,90 mg/L NH4Cl)和CO2体积分数(0.038%和10%)对小球藻(Chlorella vulgaris)生长、固碳、氮磷营养盐去除及蛋白质生产的影响,并将Logistic方程与改进的Monod方程相结合,描述小球藻比生长速率与氮、磷营养盐的关系。结果表明:10% CO2组生物量(380.16~499.52 mg/L)是0.038% CO2组生物量(44.73~120.00 mg/L)的3.54~8.30倍,同时,10% CO2组中氨氮和磷酸盐消耗速率明显高于0.038% CO2组。小球藻比生长速率、固碳速率、蛋白质含量均与生物量呈正相关(R2≥0.83,P<0.05),且在10% CO2和60 mg/L NH4Cl条件下获得最大值,分别为0.21 d-1、42.62 mg/(L·d)和228.43 mg/L。此外,拟合结果显示Logistic方程与改进的Monod方程联合应用可较好地描述小球藻的生长过程(R2=0.39~0.96),且10% CO2条件下的营养盐更易被小球藻吸收。实验结果可为微藻同步固定CO2、净化废水及副产物(如蛋白质)生产的应用提供理论参考。
-
关键词:
- 微藻 /
- CO2固定 /
- 氨氮 /
- 磷酸盐 /
- 改进的Monod方程
Abstract: To explore the potential of Chlorella vulgaris(C. vulgaris) in fixing CO2, purifying wastewater and producing protein simultaneously, the effects of different ammonium concentrations(30 mg/L, 60 mg/L, 90 mg/L NH4Cl) and CO2 concentrations(0.038% and 10%) on the growth, CO2 fixation, nutrients removal and protein production of C. vulgaris were studied. The combination of Logistic function and the modified Monod function was also used to describe the relationship between C. vulgaris specific growth rate and concentration of ammonium(NH+4-N) and phosphate(PO3-4-P), respectively.Resultsshowed that the biomass of 10% CO2 group(380.16~499.52 mg/L) was 3.54~8.30 times that of 0.038% CO2 group(44.73~120.00 mg/L). Meanwhile, the consumption rates of ammonium and phosphate in the 10% CO2 group were significantly higher than those in the 0.038% CO2 group. Correlation analysis showed that specific growth rate, carbon fixation rate, protein were all positively correlated with C. vulgaris biomass(R2>0.86, P<0.05). With 10% CO2 and 60 mg/L NH4Cl, the maximum values of specific growth rate, carbon fixation rate, and protein were 0.21 d-1, 42.62 mg/(L·d), and 228.43 mg/L, respectively. In addition, the fitting results indicated that the combination of Logistic function and the modified Monod function could well describe C. vulgaris growth(correlation coefficient R2 is 0.39~0.96), and nutrients were more easily utilized by C. vulgaris at 10% CO2. This experiment could provide a theoretical reference for fixing CO2, purifying wastewater and producing protein simultaneously by microalgae.-
Key words:
- Chlorella vulgaris /
- CO2 fixation /
- ammonium /
- phosphate /
- the modified Monod function
-
[1] CABELLO J,MORALES M G,REVAH S.Carbon dioxide consumption of the microalga Scenedesmus obtusiusculus under transient inlet CO2 concentration variations[J].Science of the Total Environment,2017,584:1310-1316. [2] ASLAM A,THOMAS-HALL S R,MUGHAL T,et al.Heavy metal bioremediation of coal-fired flue gas using microalgae under different CO2 concentrations[J].Journal of Environmental Management,2019,241:243-250. [3] ALAMI A H,ALASAD S,ALI M,et al.Investigating algae for CO2 capture and accumulation and simultaneous production of biomass for biodiesel production[J].Science of the Total Environment,2021,759:143529. [4] 陈洪一,郭仕达,金文标,等,城市污水中高效COD去除菌对微藻生长的促进作用研究[J].环境污染与防治,2017,39(8):895-899. [5] HU X G,MOHAMMED J,WU J Y,et al.Microalgal growth coupled with wastewater treatment in open and closed systems for advanced biofuel generation[J].Biomass Conversion and Biorefinery,2020.DOI: 10.1007/s13399-020-01061-w. [6] JYOTI S,SMITA S K,VIVEK K,et al.Upgrading of microalgal consortia with CO2 from fermentation of wheat straw for the phycoremediation of domestic wastewater[J].Bioresource Technology,2020,305:123063. [7] JOANA A,PAULA B A,JOÃO M,et al.CO2 utilization in the production of biomass and biocompounds by three different microalgae[J].Engineering in Life Sciences,2017,17(10):1126-1135. [8] MOLAZADEH M,DANESH S,AHMADZADEH H,et al.Influence of CO2 concentration and N:P ratio on Chlorella vulgaris-assisted nutrient bioremediation,CO2 biofixation and biomass production in a lagoon treatment plant[J].Journal of the Taiwan Institute of Chemical Engineers,2019,96:114-120. [9] VADIVELOO A,MATOS A P,CHAUDRY S,et al.Effect of CO2 addition on treating anaerobically digested abattoir effluent (ADAE) using Chlorella sp.(Trebouxiophyceae)[J].Journal of CO2 Utilization,2020,38:273-281. [10] 王钦琪,李环,王翠,等.沼液培养的普通小球藻对CO2的去除[J].应用与环境生物学报,2011,17(5):700-705. [11] RAZZAK S A,ALI S A M,HOSSAIN M M,et al.Biological CO2 fixation using Chlorella vulgaris and its thermal characteristics through thermogravimetric analysis[J].Bioprocess and biosystems engineering,2016,39(11):1651-1658. [12] TANG D H,HAN W,LI P L,et al.CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels[J].Bioresource Technology,2011,102(3):3071-3076. [13] 刘祥,王婧瑶,吴娟娟,等.微藻固定化条件优化及其污水氨氮去除潜力分析[J].环境科学,2019,40(7):3126-3134. [14] 常婷,许智慧,程鹏飞,等.不同氨氮浓度对4株常见藻株生长及酶活性的影响[J].环境科学,2019,40(8):3642-3649. [15] LI S H,SONG C F,LI M D,et al.Effect of different nitrogen ratio on the performance of CO2 absorption and microalgae conversion (CAMC) hybrid system[J].Bioresource Technology,2020,306:123126. [16] KONG W W,HUNG S L,SHI F F,et al.Study on Microcystis aeruginosa growth in incubator experiments by combination of Logistic and Monod functions[J].Algal Research,2018,35:602-612. [17] 许海,杨林章,刘兆普.铜绿微囊藻和斜生栅藻生长的氮营养动力学特征[J].环境科学研究,2008,21(1):69-73. [18] 杨坤,卢文轩,李静.小球藻磷吸收的初步研究[J].安全与环境学报,2016,16(5):216-220. [19] KUO C M,JIAN J F,LIN T H,et al.Simultaneous microalgal biomass production and CO2 fixation by cultivating Chlorella sp.GD with aquaculture wastewater and boiler flue gas[J].Bioresource Technology,2016,221:241-250. [20] 赵云,陈家城,沈英,等.利用微藻同步实现CO2生物固定与养殖废水脱氮除磷[J].环境工程学报,2016,8(9):3553-3558. [21] HARIZ H B,TAKRIFF M S,BA-ABBAD M M,et al.CO2 fixation capability of Chlorella sp.and its use in treating agricultural wastewater[J].Journal of Applied Phycology,2018,30(6):3017-3027. [22] LIU X,WANG K J,WANG J Y,et al.Carbon dioxide fixation coupled with ammonium uptake by immobilized Scenedesmus obliquus and its potential for protein production[J].Bioresource Technology,2019,289:121685. [23] LU Q,CHEN P,ADDY M,et al,Carbon-dependent alleviation of ammonia toxicity for algae cultivation and associated mechanisms exploration[J].Bioresource Technology,2018,249:99-107. [24] 刘祥,杨美娟,散而复,等.不同营养模式下固定化斜生栅藻和普通小球藻氨氮去除能力对比分析[J].环境科学研究,2020,33(8):1869-1876. [25] MOUSAVI S,NAJAFPOUR G D,MOHAMMADI M,et al.Cultivation of newly isolated microalgae Coelastrum sp.in wastewater for simultaneous CO2 fixation,lipid production and wastewater treatment[J].Bioprocess and Biosystems Engineering,2018,41(4):519-530. [26] KONG W W,SHEN B X,LYU H H,et al.Review on carbon dioxide fixation coupled with nutrients removal from wastewater by microalgae[J].Journal of Cleaner Production,2021,292:125975. [27] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002. [28] 黄岁樑,孔文文.阿特拉津作用下鱼食对铜绿微囊藻生长的影响及其导致的水体营养盐变化特征[J].生态环境学报,2017,26(11):1950-1960. [29] HUANG S L,KONG W W YANG Z J,et al.Monod functions to study Microcystis aeruginosa growth stimulated by fish feed[J].Ecotoxicology and Environmental Safety,2019,167:146-160. [30] 马雪彬,李赟,朱葆华,等.CO2对小球藻固碳速率及物质合成的影响[J].中国海洋大学学报(自然科学版),2019(增刊2):29-36. [31] YANG Y,GAO K S.Effects of CO2 concentrations on the freshwater microalgae,Chlamydomonas reinhardtii,Chlorella pyrenoidosa and Scenedesmus obliquus(Chlorophyta)[J].Journal of Applied Phycology,2003,15(5):379-389. [32] 陈艳,范明鋆,李杲光,等,氮浓度对小环藻、大型溞和金鱼藻相互作用的影响研究[J].环境污染与防治,2019,41(12):1427-1431. [33] ALMOMANI F,JUDD S,BHOSALE R R,et al.Intergraded wastewater treatment and carbon bio-fixation from flue gases using Spirulina platensis and mixed algal culture[J].Process Safety and Environmental Protection,2019,124:240-250. [34] 蒋汉明,高坤山.氮源及其浓度对三角褐指藻生长和脂肪酸组成的影响[J].水生生物学报,2004,28(5):545-551. [35] 夏奡,叶文帆,富经纬,等.燃煤烟气微藻固碳减排技术现状与展望[J].煤炭科学技术,2020,48(1):108-119. [36] 范金凤,张姗姗,于红,等.CO2对产油微藻Scenedesmus dimorphus生长和产油特性的影响[J].太阳能学报,2013,34(6):1103-1108. [37] AYATOLLAHI S Z,ESMAEILZADEH F,MOWLA D.Integrated CO2 capture,nutrients removal and biodiesel production using Chlorella vulgaris[J].Journal of Environmental Chemical Engineering,2021,9(2):104763. [38] PATEL B N,MERRETT M J.Regulation of carbonic-anhydrase activity,inorganic-carbon uptake and photosynthetic biomass yield in Chlamydomonas reinhardtii[J].Planta,1986,169(1):81-86. [39] SHAHID A,MALIK S,ZHU H,et al.Cultivating microalgae in wastewater for biomass production,pollutant removal,and atmospheric carbon mitigation:a review[J].Science of the Total Environment,2020,704:135303. [40] 潘禹,王华生,刘祖文,等.微藻废水生物处理技术研究进展[J].应用生态学报,2019,30(7):2490-2500. [41] ACIÉN FERNÁNDEZ F G,GÓMEZ-SERRANO C,FERNÁNDEZ-SEVILLA J M.Recovery of nutrients from wastewaters using microalgae[J].Frontiers in Sustainable Food Systems,2018.DOI: 10.3389/fsufs.2018.00059. [42] HUANG Y,CHENG J,LU H,et al.Transcriptome and key genes expression related to carbon fixation pathways in Chlorella PY-ZU1 cells and their growth under high concentrations of CO2[J].Biotechnology for Biofuels,2017,10(1):181. [43] 杨坤,卢文轩,李静,等.光强和CO2浓度对小球藻净化龟鳖养殖废水的影响[J].环境与发展,2017,29(1):55-58. [44] 张莹,李宝珍,屈建航,等.斜生栅藻对低浓度无机磷去除和生长情况的研究[J].环境科学,2010,31(11):2661-2665.
点击查看大图
计量
- 文章访问数: 310
- HTML全文浏览量: 25
- PDF下载量: 28
- 被引次数: 0