SSTUDY ON CATALYTIC PYROLYSIS CHARACTERISTICS OF ANTIBIOTIC RESIDUE
-
摘要: 为了将生物质转化为高品质的液体燃料,以青霉素菌渣为催化热解实验原料,在温度为400,500,600,700℃下进行热解实验,以生物质油产率最大化为目的,探究最佳热解温度。在此基础上,选用CoO/HZSM-5和NiO/HZSM-5作为催化剂,对青霉素菌渣进行催化热解实验,探究催化剂对生物油催化提质的作用。结果表明:不添加催化剂时,青霉素菌渣在500℃条件下热解所得的生物质油产率达到最高。在此温度条件下,添加催化剂CoO/HZSM-5和NiO/HZSM-5时,生物质油的产率相对降低,但催化热解后生物油中烃类物质含量分别增加8.66,7.41百分点,达到25.34%和24.09%;含氧类物质如醇类、酯类和醛类物质含量分别降低9.68,12.49百分点,为31.74%和30.34%;含氮杂环类物质含量分别降低5.96,12.49百分点,为32.51%和35.07%。天冬氨酸、组氨酸、谷氨酸和中间产物DKP的催化热解实验进一步解释了青霉素菌渣催化热解的机理。Abstract: In order to convert biomass into high-quality liquid fuel, penicillin residue was selected as catalytic pyrolysis material and pyrolysis experiments were carried out at temperatures of 400℃, 500℃, 600℃ and 700℃. To maximize the yield of biomass oil, the optimal pyrolysis temperature was explored. On this basis, CoO/HZSM-5 and NiO/HZSM-5 were selected as catalysts for catalytic pyrolysis of penicillin residue to explore their catalytic effect on the quality improvement of bio-oil. The results showed that the yield of biomass oil obtained by pyrolysis of penicillin residue at 500℃ reached the peak without catalyst. At the same temperature, the yield of biomass oil decreased when catalyst CoO/HZSM-5 and NiO/HZSM-5 were added, but the content of hydrocarbons in the bio-oil increased by 8.66 and 7.41 percentage points, reaching 25.34% and 24.09%, respectively; the contents of oxygen-containing substances including alcohols, esters, and aldehydes decreased by 9.68 and 12.49 percentage points, respectively, to 31.74% and 30.34%; the contents of nitrogen-containing heterocyclic substances decreased by 5.96 and 12.49 percentage points, respectively, to 32.51% and 35.07%. The catalytic pyrolysis of three amino acids and the intermediate product DKP was studied to further explain the catalytic pyrolysis mechanism of penicillin residue.For the purpose of maximizing the rate, the optimal pyrolysis temperature was also explored.
-
Key words:
- penicillin residue /
- amino acid /
- catalytic pyrolysis /
- HZSM-5 /
- GC-MS
-
[1] 王丽君.抗生素菌渣利用处置技术现状及对策建议[J].绿色科技,2017(18):152-154. [2] 王金双,赵继红,刘永德.我国抗生素菌渣资源化研究新进展[J].现代食品,2018(10):29-31. [3] 邹书娟,王一迪,张均雅,等.抗生素菌渣理化性质分析[J].环境科学与技术,2018,41(增刊1):47-52. [4] LI Y H,LIU D L,XIE Y M.Comprehensive utilization of antibiotic bacterial residue[J].Shandong Association of Animal Science and Veterinary Medicine,2000,6:28-31. [5] CZERNIK S.Bridgewater AV[J].Energy& Fuels,2004,18(2):590-598. [6] 张旭东,李洪亮,常春.稻壳快速热解制取生物油的试验研究[J].化工新型材料,2015,43(5):112-114. [7] 朱锡锋,李明.生物质快速热解液化技术研究进展[J].石油化工,2013,42(8):833-837. [8] 赵锦波,苟鑫,陈皓,等.多级孔分子筛在生物质催化热裂解制备芳烃中的研究进展[J].生物加工过程,2019,17(4):329-341. [9] 刘超,王海,等.木质纤维素生物质的催化快速热解[J].化学学报,2014,43(22):7594-7623. [10] 郑楠,史纪龙,王杰.生物质铁盐催化加氢热解产生生物油与气态烃的研究[J].燃料化学学报,2020,48(4):414-423. [11] PETERSON A A,VOGEL F,LACHANCE R P,et al.Thermochemical biofuel production in hydrothermal media:a review of sub-and supercritical water technologies[J].Energy& Environmental Science,2008,1(1):32-65. [12] 张秀梅,陈冠益,孟祥梅,等.催化热解生物质制取富氢气体的研究[J].燃料化学学报,2004,32(4):446-449. [13] PETERSON A A,VOGEL F,LACHANCE R P,et al.Thermochemical biofuel production in hydrothermal media:a review of sub-and supercritical water technologies[J].Energy& Environmental Science,2008,1(1):32-65. [14] THANGALAZHY-GOPAKUMAR S,ADHIKARI S,GUPTA R B,et al.Catalytic pyrolysis of helium and hydrogen to producehydrocarbon fuels from biomass[J].Biological Resources Technology,2011,102:6742-6749. [15] CHANDLER D S,RESENED F L P.Comparison of catalytic rapid pyrolysis and catalytic rapid hydrogenation pyrolysis of liquid fuel produced in fluidized bed reactor[J].Energy Fuel,2019,33:3199-3209. [16] 郑娜,王军.两种铁掺杂木炭在松木加氢热解蒸气催化加氢裂化成甲烷或提质生物油中的性能差异[J].能源燃料,2020(34):546-556. [17] 吕双亮,谭雪松,庄新银,等.木质素及其模化物催化加氮脱氧研究进展[J].现代化工,2012,32(5):35-40. [18] ZHAO Y,FU Y,GUO Q X.Production of aromatic hydrocarbons through catalytic pyrolysis of-valerolactone from biomass[J].Bioresource Technology,2012,114:740-744. [19] AGRAFIOTI E,BOURAS G,KALDERIS D,et al.Biochar production by sewage sludge pyrolysis[J].Journal of Analytical and Applied Pyrolysis,2013,101:72-78. [20] WANG K G,JOHNSTON P A,BROWN R C.Comparison of in-situ and ex-situ catalytic pyrolysis in a micro-reactor system[J].Bioresource Technology,2014,173:124-131. [21] ZHANG J,TIAN Y,CUI Y N,et al.Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge:a protein model compound study[J].Bioresource Technology,2013,132:57-63. [22] REED G P,PATERSON N P,ZHUO Y,et al.Trace element distribution in sewage sludge gasification:source and temperature effects[J].Energy& Fuels,2005,19(1):298-304. [23] 陈昆,郭斌,贡丽鹏,等.土霉素菌渣热解液的理化特性及成分分析[J].河北科技大学学报,2013,34(6):565-571. [24] 李艳美,柏雪源,易维明,等.小麦秸秆热解生物油主要成分分析与残炭表征[J].山东理工大学学报(自然科学版),2016,30(1):1-4. [25] 方书起,石崇,李攀,等.Fe-Zn共改性ZSM-5催化作用下生物质快速热解特性研究[J].化工学报,2020,71(4):1637-1645. [26] 张政,程红,陈红,等.十六烷基三甲基溴化铵修饰的HZSM-5催化稻草催化快速热解芳烃得率的提高[J].生物资源技术,2018(256):241-246. [27] RABIU S,AUTA M,KOVO A.An upgraded bio-oil produced from sugarcane bagasse via the use of HZSM-5 Zeolite catalyst[J].Egyptian Journal of Petroleum,2018,27(4):589-594. [28] ZHANG H Y,XIAO R,HUANG H.Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor[J].Bioresource Technology,2009,100(3):1428-1434. [29] 孙来芝,陈雷,赵保峰,等.Mo/ZSM-5催化作用下生物质快速热解制生物油实验研究[J].化工学报,2019,70(8):3160-3166. [30] MULLEN C A,BOATENG A A.Catalytic pyrolysis GC/MS of lignin from several sources[J].Fuel Processing Technology,2010,91(11):1446-1458. [31] 王霏,郑云武,黄元波,等.ZSM-5催化生物质三组分和松木热解生物油组分分析[J].农业工程学报,2016,32(增刊2):331-337. [32] 杨明顺,康善娇,刘卫兵,等.HZSM-5上辣椒茎秆的催化快速热解[J].可再生能源,2015(79):20-27. [33] CHEN H P,SI Y H,CHEN Y Q,et al.NOx precursors from biomass pyrolysis:distribution of amino acids in biomass and Tar-N during devolatilization using model compounds[J].Fuel,2017,187:367-375. [34] LI J,LIU Y W,SHI J Y,et al.The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG FTIR[J].Thermochimica Acta,2008,467(1/2):20-29. [35] HAO J F,GUO J Z,DING L,et al.TG-FTIR,Py-two-dimensional GC-MS with heart-cutting and LC-MS/MS to reveal hydrocyanic acidformation mechanisms during glycine pyrolysis[J].Journal of Thermal Analysis and Calorimetry,2014,115(1):667-673. [36] LI J,WANG Z Y,YANG X,et al.Evaluate the pyrolysis pathway of glycine and glycylglycine by TG FTIR[J].Journal of Analytical and Applied Pyrolysis,2007,80(1):247-253. [37] SHARMA R K,CHAN W G,HAJALIGOL M R.Product compositions from pyrolysis of some aliphatic) a-amino acids[J].Journal of Analytical and Applied Pyrolysis,2006,75(2):69-81. [38] ORSINI S,PARLANTI F,BONADUCE I.Analytical pyrolysis of proteins in samples from artistic and archaeological objects[J].Journal of Analytical and Applied Pyrolysis,2017,124:643-657. [39] CHEN Y H,LIU S E,CHEN C C.Two-step mass spectrometric approach for the Identification of diketopiperazines in chicken essence[J].European Food Research and Technology,2004,218(6):589-597. [40] HANSSON K M,AMAND L E,HABERMANN A,et al.Pyrolysis of poly-l-leucine under combustion-like conditions[J].Fuel,2003,82(6):653-660. [41] SHARMA R K,CHAN W G,WANG J,et al.On the role of peptides in the pyrolysis of amino acids[J].Journal of Analytical and Applied Pyrolysis,2004,72(1):153-163. [42] YUAN S,ZHOU Z J,LI J,et al.HCN and NH3 released from biomass and soybean cake under rapid pyrolysis[J].Energy& Fuels,2010,24(11):6166-6171.
点击查看大图
计量
- 文章访问数: 225
- HTML全文浏览量: 30
- PDF下载量: 16
- 被引次数: 0