TREATMENT OF HIGH-SALINITY PHOSPHATE-CONTAINING WASTEWATER BY CHEMICAL PRECIPITATION METHOD
-
摘要: 高盐含磷废水具有盐含量高、污染物成分复杂和生物处理难等特点。生产鸟粪石后的浓海水因添加过量的Na2HPO4及NH4HCO3等诱导剂和稀释剂,其上清液中会有PO3-4-P残留。针对其上清液磷含量超标的问题,使用化学沉淀法进行除磷实验。选用聚合氯化铝(PAC)、FeCl3、Ca (OH)2、聚丙烯酰胺(PAM)作为实验药剂,研究了反应时间、单一药剂添加量和药剂复配等因素对除磷效果的影响,筛选出2种满足出水磷含量要求(0.5 mg/L)的工艺条件。方案1:添加n (Ca)/n (P)=4.5的Ca (OH)2,处理后溶液PO3-4-P含量为0.2 mg/L;方案2:添加n (Al)∶n (P)=0.5的PAC+n (Ca)/n (P)=4.0的Ca (OH)2+0.5 g/L PAM,处理后溶液PO3-4-P含量为0.4 mg/L。综合分析,方案1操作方便,方案2有助于固液分离,二者均可以用作废水处理方案,研究结果为高盐含磷废水处理提供了一个切实可行的思路。Abstract: High-salinity phosphate-containing wastewater has the characteristics of high salt content, complex pollutant composition and is difficult to be treated by the biological method. The supernatant will contain some PO3-4-P after struvite production by adding excessive inducers and diluents such as Na2HPO4 and NH4HCO3 to seawater. A chemical precipitation method was applied for excessive phosphate removal. In our experiment, poly-aluminium chloride(PAC), FeCl3, Ca(OH)2 and polyacrylamide(PAM) were selected as experimental chemical reagents. The effect of reaction time, the additive amount of a single chemical reagent and a combination of chemical reagents on the phosphate removal effect were studied. Finally, two strategies were selected, which could make the phosphate content in the effluent meet the emission standard. Strategy 1:adding Ca(OH)2 with a molar ratio of Ca:P of 4.5 made the PO3-4-P content decrease to 0.2 mg/L. Strategy 2:adding Ca(OH)2 with a molar ratio of Ca:P of 4.0, PAC with a molar ratio of Al:P of 0.5, and PAM with a concentration of 0.5 g/L made PO3-4-P content decrease to 0.4 mg/L. Strategy 1 was easy to operate while strategy 2 was helpful for solid-liquid separation. Both of them can be used for the treatment of high-salinity phosphate-containing wastewater. The results provide a practical idea for the treatment of high-salinity phosphate-containing wastewater in the future.
-
[1] 李芳,刘柏林.PFS和PAM化学沉淀法处理高磷废水的实验研究[J].广州化工,2020,48(14):85-87. [2] 城镇污水处理厂污染物排放标准:GB 18918-2002[S].北京:国家环境保护总局,2002. [3] ZAMAN M,KIM M,NAKHLA G,et al.Enhanced biological phosphorus removal using thermal alkaline hydrolyzed municipal wastewater biosolids[J].Journal of Environmental Sciences,2019,86(12):164-174. [4] MARTINS M C,SANTOS E B H,MARQUES C R.First study on oyster-shell-based phosphorous removal in saltwater:a proxy to effluent bioremediation of marine aquaculture[J].Science of the Total Environment,2017,574(JAN.1):605-615. [5] SUN H J,MOHAMMED A N,LIU Y.Phosphorus recovery from source-diverted blackwater through struvite precipitation[J].Science of the Total Environment,2020,743(NOV.15):140747. [6] SHTULL-TRAURING E,COHEN A,BEN-HUR M,et al.Reducing salinity of treated waste water with large scale desalination[J].Water Research,2020,186:116322. [7] GU K H,HEE A D.Study on the biological denitrification reaction of high-salinity wastewater using an aerobic granular sludge (AGS)[J].Journal of Environmental Science International,2019,28(7):607-615. [8] ZHANG H,ELSKENS M,CHEN G,et al.Phosphate adsorption on hydrous ferric oxide (HFO) at different salinities and pHs[J].Chemosphere,2019,225(JUN.):352-359. [9] 陈阳.石灰-氟化钠复合絮凝剂除磷试验研究[D].杭州:浙江大学,2014. [10] 马韩静,李玲玲,孙子惠,等.复合除磷剂的使用与分次投加方式对除磷效果的影响[J].净水技术,2019,38(3):76-81. [11] JEON K J,KIM J H,AHN J H.Phosphorus removal characteristics of titanium salts compared with aluminum salt[J].Water Environment Research,2017,89(8):739-743. [12] MBAMBA C K,LINDBLOM E,FLORES-ALSINA X,et al.Plant-wide model-based analysis of iron dosage strategies for chemical phosphorus removal in wastewater treatment systems[J].Water Research,2019,155:12-25. [13] JI L,YIN C S,CHEN X Y,et al.Hydrogen peroxide coordination-calcium salt precipitation for deep phosphorus removal from crude sodium tungstate solution[J].Hydrometallurgy,2020,191:105189. [14] 吴志宇,黎建平,王怡璇,等.化学镀镍废液钙盐沉淀法除磷工艺的研究[J].电镀与环保,2019,39(5):72-74. [15] 冉子寒,张宇峰,顾瑞之,等."化学沉淀-超滤"组合工艺处理焦磷酸盐镀铜废水的研究[J].膜科学与技术,2020,40(2):6-13. [16] 唐益洲,孟勇,崔磊,等.电催化氧化-化学沉淀耦合工艺处理化学镀镍废水[J].工业水处理,2017,37(5):58-62. [17] 司马卫平.高盐高氮磷榨菜有机废水与城镇污水协同处理脱氮除磷研究[D].重庆:重庆大学,2013. [18] HU P,REN J,HU X Y,et al.Comparison of two starch-based flocculants with polyacrylamide for the simultaneous removal of phosphorus and turbidity from simulated and actual wastewater samples in combination with FeCl3[J].International Journal of Biological Macromolecules,2021,167(15):223-232. [19] 靳雅莉,谢雨桐,马洪霞,等.含聚丙烯酰胺废水处理技术的研究进展[J].化工技术与开发,2019,48(10):14. [20] 杨二亮,周元祥,王洪雷,等.PAC-PAM联合处理某工业园电镀废水的处理效果试验[J].绿色科技,2016(16):141-143. [21] 曾德芳,徐保林.沉淀-絮凝结合法处理磷化废水的研究[J].环境工程学报,2009,3(5):795-798. [22] 任婷.高纯石墨生产中含氟废水处理工艺研究[D].哈尔滨:哈尔滨工业大学,2016. [23] 黄淦.联用强化混凝与化学沉淀法去除水中重金属离子的研究[D].长沙:湖南大学,2008. [24] BACHAND P A M,VAITHIYANATHAN P,RICHARDSON C J.Phosphorous removal improvements and cost reductions leveraging cationic polymers and anionic polyacrylamides in Chemically Enhanced Treatment Wetland (CETW) systems[J].Ecological Engineering,2020,146:105722. 期刊类型引用(14)
1. 程祥,张敬利,叶育伟,谢小龙,陈颢,郭圣达,陈丽勇,何思霖. 化学镀Ni-W-P合金的研究进展和应用. 硬质合金. 2025(01): 55-63 . 百度学术
2. 张传好,魏静玉,陈晓远,殷俊,袁振文,闫莹,张乐华,廖本仁. 低温化学沉淀和冷冻浓缩结晶法处理高盐废水及回收磷酸盐. 上海染料. 2024(01): 1-5 . 百度学术
3. 杨赛国,谷康辉. 浅谈某城市再生水回用的现状及进展. 广东化工. 2024(06): 104-107 . 百度学术
4. 程炜,章婷婷,慕昕志,朱倩倩. 超薄玻璃基板深加工项目生产废水预处理工程设计. 净水技术. 2024(04): 169-177 . 百度学术
5. 郭梦婷,王尹菲,李文斌,邓红艳,阳红. 不同两性复配修饰半碳化纤维对Pb~(2+)的吸附差异. 环境监测管理与技术. 2024(03): 59-62 . 百度学术
6. 唐瑶,梁高杰,石宗武,周健,熊训辉. 化学镀镍废液处理中磷物种的转化及去除研究. 工业水处理. 2024(06): 135-142 . 百度学术
7. 邹明,丁颖,刘海涛,徐丽慧,潘虹. 纳米CdS/rGO的表征与光催化性能研究. 化工新型材料. 2024(07): 148-152+156 . 百度学术
8. 陈运超,龙婉丹,庄培强,钟国龙,张铭栋,穆景利. 不同生物炭对水产养殖尾水中磷的去除研究. 工业水处理. 2024(07): 74-82 . 百度学术
9. 苏泽林,罗皓百. 某工业园区高磷废水处理工艺设计实例. 广东化工. 2024(17): 134-135+133 . 百度学术
10. 朱立新,韩文丽,孙体昌,陆鹏宇,李永峰,邓宗义. 沉淀剂对液态烃碱渣中硫化物的去除特性. 化工环保. 2023(04): 464-469 . 百度学术
11. 陈卫民,李磊,刘杰,邢波,杨馨蕊,罗丽萍,孙福华. 钴的脱除工艺对聚晶金刚石复合片性能的影响. 硬质合金. 2023(04): 271-278 . 百度学术
12. 宗绍宇. SBR/PBR改性膜在市政污水脱氮除磷综合处理工艺优化. 粘接. 2023(12): 123-126 . 百度学术
13. 刘海燕. 电絮凝在废水处理中的研究及应用. 辽宁化工. 2022(08): 1125-1127 . 百度学术
14. 张豪哲,李文,杜明泽,姜鹏,李江华. 闭坑矿山地下水污染防治技术研究现状和展望. 煤炭工程. 2022(11): 170-176 . 百度学术
其他类型引用(35)
-

计量
- 文章访问数: 452
- HTML全文浏览量: 52
- PDF下载量: 48
- 被引次数: 49