ADSORPTION PROPERTIES OF TYPICAL ANTIBIOTICS BY COMPOSITE MAGNETIC NANO-GEL BEADS
-
摘要: 以复合磁性纳米凝胶球(Fe3O4@PVA-SA-PAC)为吸附剂,探究其对水中磺胺甲噁唑(SMX)、环丙沙星(CIP)、甲氧苄啶(TMP)抗生素类污染物去除效果,并分析pH、投加量、污染物初始浓度、吸附时间等因素对吸附过程的影响。结果表明:pH=3时最有利于抗生素吸附;吸附量随着初始浓度增大而上升,随着投加量增加而下降;3种抗生素吸附表现为物理吸附和化学吸附共存、均质单分子层吸附与非均质多分子层吸附共同作用的状态。其中SMX与CIP吸附更符合准二级动力学模型,而TMP更符合准一级动力学模型;温度为308 K时,Langmuir与Freundlich方程均达到较高拟合度(0.938≤R2≤0.998),此时SMX、TMP和CIP的最大吸附量分别为47.188,59.649,96.468 mg/g;竞争性吸附试验表明复合凝胶球可同时吸附多种目标抗生素污染物,具备良好吸附应用前景。Abstract: The removal efficiency of antibiotic pollutants such as sulfamethoxazole(SMX), ciprofloxacin(CIP) and methoxyphenidine(TMP) were studied using magnetic nano-gel beads(Fe3O4@PVA-SA-PAC) composite, and the influences of pH, dosage, initial concentration of pollutants and adsorption time on the adsorption process were analyzed. The result showed that pH=3 was the optimal condition. The adsorption capacity increased with the increase of initial concentration and decreased with the increase of dosage. The adsorption of these three antibiotics by Fe3O4@PVA-SA-PAC showed the coexistence of physical and chemical adsorption, also homogeneous monolayer adsorption and heterogeneous multi-molecular layer adsorption. The adsorption of SMX and CIP was more consistent with the pseudo-first-order kinetic model, while TMP was more consistent with the pseudo-second-order kinetic model. At 308 K, both the Langmuir equation and Freundlich equation reached a high fitting degree(0.938 ≤ R2 ≤ 0.998). By now, the maximum adsorption capacity of SMX, TMP and CIP were 47.188 mg/g, 59.649 mg/g and 96.468 mg/g, respectively. Competitive adsorption experiments showed that the composite gel beads could simultaneously adsorb a variety of target antibiotic pollutants, indicating a good application prospect of adsorption.
-
Key words:
- antibiotics /
- magnetic nano-gel beads /
- adsorbent /
- competitive adsorption
-
[1] 刘鹏霄,王旭,冯玲.自然水环境中抗生素的污染现状、来源及危害研究进展[J].环境工程,2020,38(5):36-42. [2] 辛丙靖,李鹏,王润霖.环丙沙星废水的来源及生物毒性研究[J].化工管理,2019,(36):27-28. [3] 李雪冰,付浩,林朋飞,等.水中典型磺胺类抗生素的活性炭吸附性质探究[J].给水排水,2016,42(1):36-41. [4] 金明兰,刘凯,徐莹莹,等.污水处理厂中磺胺类抗生素、抗性菌、抗性基因的特性[J].环境工程,2015,33(11):1-4. [5] 张甜,姜博,邢奕,等.吸附法去除水中抗生素研究进展[J].环境工程,2021,39(3):29-39. [6] 谈慧文,杜佳媛,魏永鹏,等.掺杂氮、硫的石墨烯材料对磺胺类抗生素的吸附行为[J].中国海洋大学学报(自然科学版),2021,51(2):97-104. [7] SHEJALE K P,YADAV D,PATIL H,et al.Evaluation of techniques for the remediation of antibiotic-contaminated water using activated carbon[J].Molecular Systems Design& Engineering,2020,5(4):743-756. [8] 孙赛楠.碳纳米管及石墨烯材料对抗生素的吸附特性研究[D].上海:上海应用技术学院,2016. [9] 柴琴琴,呼世斌,刘建伟,等.有机改性对凹凸棒黏土吸附四环素类抗生素的影响[J].中国环境监测,2018,34(5):95-103. [10] WANG X D,YIN R L,ZENG L X,et al.A review of graphene-based nanomaterials for removal of antibiotics from aqueous environments[J].Environmental Pollution,2019,253:100-110. [11] 张玲,王文文,常红玉,等.抗生素废水处理方法的研究进展[J].广州化工,2020,48(5):47-50. [12] MEHRABI F,MOHAMADI M,MOSTAFAVI A,et al.Magnetic solid phase extraction based on PVA-TEOS/grafted Fe3O4@SiO2 magnetic nanofibers for analysis of sulfamethoxazole and trimethoprim in water samples[J].Journal of Solid State Chemistry,2020,292:121716. [13] HU Y Y,PAN C,ZHENG X H,et al.Removal of ciprofloxacin with aluminum-pillared kaolin sodium alginate beads (CA-Al-KABs):kinetics,isotherms,and BBD model[J].Water,2020,12(3):905. [14] 张鸿郭,李猛,罗海玲,等.除铊硫酸盐还原菌固定化的优化和表征[J].环境工程,2016,34(9):46-50. [15] 梁莹,荣宏伟,骆华勇,等.1种磁性纳米凝胶球吸附盐酸四环素的性能研究[J].水处理技术,2019,45(8):56-66. [16] 梁莹.PVA-SA基凝胶球材料的制备及其对水中抗生素的吸附研究[D].广州:广州大学,2020. [17] 周志伟.磁性纳米材料吸附/降解水环境中氧氟沙星抗生素[D].南京:南京航空航天大学,2015. [18] CHEN H,BIN G,LI H,et al.Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media[J].Journal of Contaminant Hydrology,2011,126(1/2):29-36. [19] GUO Z Z,XU L,LIU C,et al.Comparison of physicochemical properties of activated carbons derived from biomass wastes by H4P2O7 activation:adsorption of trimethoprim[J].Desalination and Water Treatment,2015,57(46):1-11. [20] 张小娜.藻酸盐基吸附材料的制备及其对抗生素的吸附性能研究[D].绵阳:西南科技大学,2019. [21] BALARAK D,MOSTAFAPOUR F K,JOGHATAEI A.Kinetics and mechanism of red mud in adsorption of ciprofloxacin in aqueous solution[J].Bioscience Biotechnology Research Communications,2017,10(1):243-250. [22] NINWIWEK N,HONGSAWAT P,PUNYAPALAKUL P,et al.Removal of the antibiotic sulfamethoxazole from environmental water by mesoporous silica-magnetic graphene oxide nanocomposite technology:adsorption characteristics,coadsorption and uptake mechanism[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,580:123716. [23] 马荣秀,张雅伟,戚后娟,等.高孔隙率海藻酸钠-聚乙烯醇复合海绵的制备及性能[J].东北林业大学学报,2020,48(12):112-117. [24] LANGMUIR I.The adsorption of gases on plane surfaces of glass,mica and platinum[J].Journal of the American Chemical Society,1918,40(9):1361-1403. [25] FREUNDLICH H M F.Over the adsorption in solution[J].The Journal of Physical Chemistry C,1906,57:385-470. [26] KIM S H,SHON H K,NGO H H.Adsorption characteristics of antibiotics trimethoprim on powdered and granular activated carbon[J].Journal of Industrical and Engineering Chemistry,2010,16(3):344-349. [27] PEREZ J J,VILLANUEVA M E,SÁNCHEZ L,et al.Low cost and regenerable composites based on chitin/bentonite for the adsorption potential emerging pollutants[J].Applied Clay Science,2020,194:105703. [28] HUANG L H,WANG M,SHI C X,et al.Adsorption of tetracycline and ciprofloxacin on activated carbon prepared from lignin with H3PO4 activation[J].Desalination and Water Treatment,2014,52(13/14/15):2678-2687. [29] MA J,YU F,ZHOU L,et al.Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes[J].ACS Applied Materials& Interfaces,2012,4(11):5749-5760. [30] SHI S,FAN Y W,HUANG Y M.Facile low temperature hydrothermal synthesis of magnetic mesoporous carbon nanocomposite for adsorption removal of ciprofloxacin antibiotics[J].Industrial& Engineering Chemistry Research,2013,52(7):2604-2612. [31] 宋奇轩.改性多壁碳纳米管的制备及对磺胺甲噁唑的吸附研究[D].济南:济南大学,2016. [32] 管梓含.γ-Fe2O3/石墨烯纳米复合材料的制备及对水中DFS和SMX的吸附研究[D].哈尔滨:哈尔滨工业大学,2016. [33] MOHSENI M,POSTACCHINI P,DEMEESTERE K,et al.Freestanding PAC/CNT microtubes remove sulfamethoxazole from water through a temperature-assisted cyclic process[J].Journal of Hazardous Materials,2020,392:122133.
点击查看大图
计量
- 文章访问数: 305
- HTML全文浏览量: 39
- PDF下载量: 8
- 被引次数: 0